BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29654709)

  • 1.
    Roytman VA; Karugu RW; Hong Y; Hirschi JS; Vetticatt MJ
    Chemistry; 2018 Jun; 24(32):8098-8102. PubMed ID: 29654709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relative preference of enamine/iminium pathways in an organocatalytic Michael addition reaction.
    Patil MP; Sunoj RB
    Chem Asian J; 2009 May; 4(5):714-24. PubMed ID: 19353592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition state analysis of an enantioselective Michael addition by a bifunctional thiourea organocatalyst.
    Izzo JA; Myshchuk Y; Hirschi JS; Vetticatt MJ
    Org Biomol Chem; 2019 Apr; 17(16):3934-3939. PubMed ID: 30942247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (16) O/(18) O Exchange of Aldehydes and Ketones caused by H2 (18) O in the Mechanistic Investigation of Organocatalyzed Michael, Mannich, and Aldol Reactions.
    Hayashi Y; Mukaiyama T; Benohoud M; Gupta NR; Ono T; Toda S
    Chemistry; 2016 Apr; 22(17):5868-72. PubMed ID: 26841358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation.
    Hamza A; Schubert G; Soós T; Papai I
    J Am Chem Soc; 2006 Oct; 128(40):13151-60. PubMed ID: 17017795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotope Effects Reveal the Mechanism of Enamine Formation in l-Proline-Catalyzed α-Amination of Aldehydes.
    Ashley MA; Hirschi JS; Izzo JA; Vetticatt MJ
    J Am Chem Soc; 2016 Feb; 138(6):1756-9. PubMed ID: 26772311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic Aminocatalysis.
    Lv J; Zhang Q; Cai M; Han Y; Luo S
    Chem Asian J; 2018 Apr; 13(7):740-753. PubMed ID: 29493891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pushing the limits of aminocatalysis: enantioselective transformations of α-branched β-ketocarbonyls and vinyl ketones by chiral primary amines.
    Zhang L; Fu N; Luo S
    Acc Chem Res; 2015 Apr; 48(4):986-97. PubMed ID: 25831453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Approach to Diarylprolinol-Silyl Ethers in Aminocatalysis.
    Halskov KS; Donslund BS; Paz BM; Jørgensen KA
    Acc Chem Res; 2016 May; 49(5):974-86. PubMed ID: 27128200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study on the asymmetric Michael addition of cyclohexanone with trans-beta-nitrostyrene catalyzed by a pyrrolidine-type chiral ionic liquid.
    Sun H; Zhang D; Zhang C; Liu C
    Chirality; 2010 Oct; 22(9):813-9. PubMed ID: 20803745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling high precision stereocontrol in a triple cascade organocatalytic reaction.
    Shinisha CB; Sunoj RB
    Org Biomol Chem; 2008 Nov; 6(21):3921-9. PubMed ID: 18931798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic role of the enol ether intermediate in the intramolecular Stetter reaction: a computational perspective.
    Huang GT; Yu JK
    Phys Chem Chem Phys; 2024 Apr; 26(15):11833-11853. PubMed ID: 38567403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of noninnocent solvent molecules in organocatalyzed asymmetric Michael addition reactions.
    Patil MP; Sunoj RB
    Chemistry; 2008; 14(33):10472-85. PubMed ID: 18830981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study.
    Zhu JL; Zhang Y; Liu C; Zheng AM; Wang W
    J Org Chem; 2012 Nov; 77(21):9813-25. PubMed ID: 23043446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of (-)-oseltamivir and mechanistic insights into the organocatalyzed Michael reaction.
    Mukaiyama T; Ishikawa H; Koshino H; Hayashi Y
    Chemistry; 2013 Dec; 19(52):17789-800. PubMed ID: 24249709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of bifunctional squaramide-catalyzed organocatalytic Michael addition: a protonated catalyst as an oxyanion hole.
    Kótai B; Kardos G; Hamza A; Farkas V; Pápai I; Soós T
    Chemistry; 2014 May; 20(19):5631-9. PubMed ID: 24677388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical elucidation on the functional role of pyrrolidine-type ionic liquids in inducing stereoselectivity of the Michael addition of cyclohexanone with trans-β-nitrostyrene.
    Sun H; Zhang D
    Chirality; 2011 Mar; 23(3):260-4. PubMed ID: 20928898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the enantioselectivity in organocatalytic Michael additions of β-ketoamides to α,β-unsaturated carbonyls: a combined experimental, spectroscopic and theoretical study.
    Quintard A; Cheshmedzhieva D; Sanchez Duque Mdel M; Gaudel-Siri A; Naubron JV; Génisson Y; Plaquevent JC; Bugaut X; Rodriguez J; Constantieux T
    Chemistry; 2015 Jan; 21(2):778-90. PubMed ID: 25382666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study of the dual catalytic role of L-proline in the aldol reaction and the effect of water on it.
    Nobakht Y; Arshadi N
    J Mol Model; 2018 Nov; 24(12):334. PubMed ID: 30402658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral primary-amine-catalyzed conjugate addition to α-substituted vinyl ketones/aldehydes: divergent stereocontrol modes on enamine protonation.
    Fu N; Zhang L; Luo S; Cheng JP
    Chemistry; 2013 Nov; 19(46):15669-81. PubMed ID: 24114835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.