BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29654796)

  • 1. Combinatorial Design of a Nanobody that Specifically Targets Structured RNAs.
    Cawez F; Duray E; Hu Y; Vandenameele J; Romão E; Vincke C; Dumoulin M; Galleni M; Muyldermans S; Vandevenne M
    J Mol Biol; 2018 May; 430(11):1652-1670. PubMed ID: 29654796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.
    Koromyslova AD; Hansman GS
    PLoS Pathog; 2017 Nov; 13(11):e1006636. PubMed ID: 29095961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobody binding to a conserved epitope promotes norovirus particle disassembly.
    Koromyslova AD; Hansman GS
    J Virol; 2015 Mar; 89(5):2718-30. PubMed ID: 25520510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension.
    Fan K; Jiang B; Guan Z; He J; Yang D; Xie N; Nie G; Xie C; Yan X
    Anal Chem; 2018 May; 90(9):5671-5677. PubMed ID: 29634235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation.
    Kunz P; Ortale A; Mücke N; Zinner K; Hoheisel JD
    Protein Eng Des Sel; 2019 Dec; 32(5):241-249. PubMed ID: 31340035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy.
    Braun MB; Traenkle B; Koch PA; Emele F; Weiss F; Poetz O; Stehle T; Rothbauer U
    Sci Rep; 2016 Jan; 6():19211. PubMed ID: 26791954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and specificity of several triclocarban-binding single domain camelid antibody fragments.
    Tabares-da Rosa S; Wogulis LA; Wogulis MD; González-Sapienza G; Wilson DK
    J Mol Recognit; 2019 Jan; 32(1):e2755. PubMed ID: 30033524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.
    Disney MD; Angelbello AJ
    Acc Chem Res; 2016 Dec; 49(12):2698-2704. PubMed ID: 27993012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic functionalization of a nanobody using protein insertion technology.
    Crasson O; Rhazi N; Jacquin O; Freichels A; Jérôme C; Ruth N; Galleni M; Filée P; Vandevenne M
    Protein Eng Des Sel; 2015 Oct; 28(10):451-60. PubMed ID: 25852149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A camelid nanobody against EGFR was easily obtained through refolding of inclusion body expressed in Escherichia coli.
    Xu L; Song X; Jia L
    Biotechnol Appl Biochem; 2017 Nov; 64(6):895-901. PubMed ID: 28853185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of type VI secretion by an anti-TssM llama nanobody.
    Nguyen VS; Logger L; Spinelli S; Desmyter A; Le TT; Kellenberger C; Douzi B; Durand E; Roussel A; Cascales E; Cambillau C
    PLoS One; 2015; 10(3):e0122187. PubMed ID: 25811612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nanobody toolbox targeting dimeric coiled-coil modules for functionalization of designed protein origami structures.
    Majerle A; Hadži S; Aupič J; Satler T; Lapenta F; Strmšek Ž; Lah J; Loris R; Jerala R
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33893235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immuno-targeting the multifunctional CD38 using nanobody.
    Li T; Qi S; Unger M; Hou YN; Deng QW; Liu J; Lam CMC; Wang XW; Xin D; Zhang P; Koch-Nolte F; Hao Q; Zhang H; Lee HC; Zhao YJ
    Sci Rep; 2016 Jun; 6():27055. PubMed ID: 27251573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes.
    Fridy PC; Thompson MK; Ketaren NE; Rout MP
    Anal Biochem; 2015 May; 477():92-4. PubMed ID: 25707320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the non-inhibitory mechanism of the anti-EGFR EgB4 nanobody.
    Zeronian MR; Doulkeridou S; van Bergen En Henegouwen PMP; Janssen BJC
    BMC Mol Cell Biol; 2022 Mar; 23(1):12. PubMed ID: 35232398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant λ bacteriophage displaying nanobody towards third domain of HER-2 epitope inhibits proliferation of breast carcinoma SKBR-3 cell line.
    Shoae-Hassani A; Mortazavi-Tabatabaei SA; Sharif S; Madadi S; Rezaei-Khaligh H; Verdi J
    Arch Immunol Ther Exp (Warsz); 2013 Feb; 61(1):75-83. PubMed ID: 23224340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical shift assignments of a camelid nanobody against aflatoxin B
    Nie Y; Li S; Zhu J; Hu R; Liu M; He T; Yang Y
    Biomol NMR Assign; 2019 Apr; 13(1):75-78. PubMed ID: 30328057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.