BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29654833)

  • 21. A genome-wide transcription analysis of a fungal riboflavin overproducer.
    Karos M; Vilariño C; Bollschweiler C; Revuelta JL
    J Biotechnol; 2004 Sep; 113(1-3):69-76. PubMed ID: 15380648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological characterization of a pyrimidine auxotroph exposes link between uracil phosphoribosyltransferase regulation and riboflavin production in Ashbya gossypii.
    Silva R; Aguiar TQ; Oliveira C; Domingues L
    N Biotechnol; 2019 May; 50():1-8. PubMed ID: 30590201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer
    Schmidt G; Stahmann KP; Kaesler B; Sahm H
    Microbiology (Reading); 1996 Feb; 142(2):419-426. PubMed ID: 33657747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New biotechnological applications for Ashbya gossypii: Challenges and perspectives.
    Aguiar TQ; Silva R; Domingues L
    Bioengineered; 2017 Jul; 8(4):309-315. PubMed ID: 27791453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of malate synthase in the glyoxylate cycle of Ashbya gossypii for the efficient production of riboflavin.
    Sugimoto T; Kanamasa S; Kato T; Park EY
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):529-39. PubMed ID: 19343342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production.
    Sugimoto T; Morimoto A; Nariyama M; Kato T; Park EY
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):57-64. PubMed ID: 19826846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ashbya gossypii: a model for fungal developmental biology.
    Wendland J; Walther A
    Nat Rev Microbiol; 2005 May; 3(5):421-9. PubMed ID: 15821727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii.
    Nakajima K; Mitsuda H
    Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Live cell fluorescence imaging for early expression and localization of RIB1 and RIB3 genes in Ashbya gossypii.
    Sengupta S; Kaufmann A; T S C
    J Basic Microbiol; 2014 Jan; 54(1):81-7. PubMed ID: 23553441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene.
    Patel MV; T S C
    Enzyme Microb Technol; 2020 Feb; 133():109455. PubMed ID: 31874696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of sirtuins on the riboflavin production in Ashbya gossypii.
    Kato T; Azegami J; Kano M; El Enshasy HA; Park EY
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7813-7823. PubMed ID: 34559286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring.
    Bacher A; Le Van Q; Keller PJ; Floss HG
    J Biol Chem; 1983 Nov; 258(22):13431-7. PubMed ID: 6417129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light exposure during growth increases riboflavin production, reactive oxygen species accumulation and DNA damage in Ashbya gossypii riboflavin-overproducing strains.
    Silva R; Aguiar TQ; Oliveira R; Domingues L
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30321337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of an Ashbya gossypii mutant for improved riboflavin production.
    Wei S; Hurley J; Jiang Z; Wang S; Wang Y
    Braz J Microbiol; 2012 Apr; 43(2):441-8. PubMed ID: 24031850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii.
    Jiménez A; Santos MA; Pompejus M; Revuelta JL
    Appl Environ Microbiol; 2005 Oct; 71(10):5743-51. PubMed ID: 16204483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis.
    Kato T; Azegami J; Yokomori A; Dohra H; El Enshasy HA; Park EY
    BMC Genomics; 2020 Apr; 21(1):319. PubMed ID: 32326906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of xylose by engineered strains of
    Díaz-Fernández D; Lozano-Martínez P; Buey RM; Revuelta JL; Jiménez A
    Biotechnol Biofuels; 2017; 10():3. PubMed ID: 28053663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of riboflavin: mechanism of formation of the ribitylamino linkage.
    Keller PJ; Le Van Q; Kim SU; Bown DH; Chen HC; Kohnle A; Bacher A; Floss HG
    Biochemistry; 1988 Feb; 27(4):1117-20. PubMed ID: 3130093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Riboflavin Deficiency in Rats Decreases de novo Formate Production but Does Not Affect Plasma Formate Concentration.
    MacMillan L; Lamarre SG; daSilva RP; Jacobs RL; Brosnan ME; Brosnan JT
    J Nutr; 2017 Mar; 147(3):346-352. PubMed ID: 28122934
    [No Abstract]   [Full Text] [Related]  

  • 40. Functional analysis of cis-aconitate decarboxylase and trans-aconitate metabolism in riboflavin-producing filamentous Ashbya gossypii.
    Sugimoto T; Kato T; Park EY
    J Biosci Bioeng; 2014 May; 117(5):563-8. PubMed ID: 24315530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.