These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 29654995)
1. Kinetic study of thermal degradation of olive cake based on a scheme of fractionation and its behavior impregnated of metals. Quesada L; Pérez A; Calero M; Blázquez G; Martín-Lara MA Bioresour Technol; 2018 Aug; 261():104-116. PubMed ID: 29654995 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analysis of pyrolysis and combustion of the olive tree pruning by chemical fractionation. Pérez A; Martín-Lara MA; Gálvez-Pérez A; Calero M; Ronda A Bioresour Technol; 2018 Feb; 249():557-566. PubMed ID: 29091838 [TBL] [Abstract][Full Text] [Related]
3. Removal of heavy metals from acid mining effluents by hydrolyzed olive cake. Fernández-González R; Martín-Lara MA; Iáñez-Rodríguez I; Calero M Bioresour Technol; 2018 Nov; 268():169-175. PubMed ID: 30077173 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of thermal decomposition of some biomasses in an inert environment. An investigation of the effect of lead loaded by biosorption. Martín-Lara MÁ; Iáñez-Rodríguez I; Blázquez G; Quesada L; Pérez A; Calero M Waste Manag; 2017 Dec; 70():101-113. PubMed ID: 28951148 [TBL] [Abstract][Full Text] [Related]
5. Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres. Lopes FCR; Pereira JC; Tannous K Bioresour Technol; 2018 Dec; 270():294-302. PubMed ID: 30236906 [TBL] [Abstract][Full Text] [Related]
6. Drying and thermal decomposition kinetics of sugarcane straw by nonisothermal thermogravimetric analysis. Rueda-Ordóñez YJ; Tannous K Bioresour Technol; 2018 Sep; 264():131-139. PubMed ID: 29800773 [TBL] [Abstract][Full Text] [Related]
7. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591 [TBL] [Abstract][Full Text] [Related]
8. Thermal Decomposition Behavior of Hydroxytyrosol (HT) in Nitrogen Atmosphere Based on TG-FTIR Methods. Tu JL; Yuan JJ Molecules; 2018 Feb; 23(2):. PubMed ID: 29438312 [TBL] [Abstract][Full Text] [Related]
9. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model. Ren X; Chen J; Li G; Wang Y; Lang X; Fan S Bioresour Technol; 2018 Aug; 261():403-411. PubMed ID: 29684870 [TBL] [Abstract][Full Text] [Related]
10. Non-isothermal kinetic study of de-oiled seeds cake of African star apple ( Sokoto MA; Singh R; Krishna BB; Kumar J; Bhaskar T Heliyon; 2016 Oct; 2(10):e00172. PubMed ID: 27747303 [TBL] [Abstract][Full Text] [Related]
11. Validation of a method to quantify copper and other metals in olive fruit by ETAAS. Application to the residual metal control after olive tree treatments with different copper formulations. Soares ME; Pereira JA; Bastos ML J Agric Food Chem; 2006 May; 54(11):3923-8. PubMed ID: 16719516 [TBL] [Abstract][Full Text] [Related]
12. Thermogravimetric kinetic analysis and pollutant evolution during the pyrolysis and combustion of mobile phone case. Font R; Moltó J; Egea S; Conesa JA Chemosphere; 2011 Oct; 85(3):516-24. PubMed ID: 21906775 [TBL] [Abstract][Full Text] [Related]
13. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics. Chen J; Wang Y; Lang X; Ren X; Fan S Bioresour Technol; 2017 Nov; 243():37-46. PubMed ID: 28651137 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend. Rueda-Ordóñez YJ; Arias-Hernández CJ; Manrique-Pinto JF; Gauthier-Maradei P; Bizzo WA Bioresour Technol; 2019 Nov; 292():121923. PubMed ID: 31404752 [TBL] [Abstract][Full Text] [Related]
15. Thermal behaviour and kinetic study of the olive oil production chain residues and their mixtures during co-combustion. Buratti C; Mousavi S; Barbanera M; Lascaro E; Cotana F; Bufacchi M Bioresour Technol; 2016 Aug; 214():266-275. PubMed ID: 27136614 [TBL] [Abstract][Full Text] [Related]
16. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air. Rueda-Ordóñez YJ; Tannous K Bioresour Technol; 2016 Jul; 211():231-9. PubMed ID: 27019126 [TBL] [Abstract][Full Text] [Related]
17. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions. Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093 [TBL] [Abstract][Full Text] [Related]
18. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063 [TBL] [Abstract][Full Text] [Related]
19. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent. Ronda A; Della Zassa M; Martín-Lara MA; Calero M; Canu P J Hazard Mater; 2016 May; 308():285-93. PubMed ID: 26855182 [TBL] [Abstract][Full Text] [Related]
20. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Shen DK; Gu S; Jin B; Fang MX Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]