These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29655035)
41. Electrotrophic activity and electrosynthetic acetate production by Desulfobacterium autotrophicum HRM2. Zaybak Z; Logan BE; Pisciotta JM Bioelectrochemistry; 2018 Oct; 123():150-155. PubMed ID: 29753938 [TBL] [Abstract][Full Text] [Related]
42. Mo Tian S; Wang H; Dong Z; Yang Y; Yuan H; Huang Q; Song TS; Xie J Biotechnol Biofuels; 2019; 12():71. PubMed ID: 30976321 [TBL] [Abstract][Full Text] [Related]
43. Improving bioplastic production by Ranaivoarisoa TO; Bai W; Rengasamy K; Steele H; Silberman M; Olabode J; Bose A bioRxiv; 2023 May; ():. PubMed ID: 37292853 [TBL] [Abstract][Full Text] [Related]
44. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Dong Z; Wang H; Tian S; Yang Y; Yuan H; Huang Q; Song TS; Xie J Bioresour Technol; 2018 Dec; 269():203-209. PubMed ID: 30173066 [TBL] [Abstract][Full Text] [Related]
45. Ultrasensitive electrochemical biosensor based on graphite oxide, Prussian blue, and PTC-NH2 for the detection of α2,6-sialylated glycans in human serum. Gao L; He J; Xu W; Zhang J; Hui J; Guo Y; Li W; Yu C Biosens Bioelectron; 2014 Dec; 62():79-83. PubMed ID: 24984287 [TBL] [Abstract][Full Text] [Related]
46. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Chen CY; Lu WB; Liu CH; Chang JS Bioresour Technol; 2008 Jun; 99(9):3609-16. PubMed ID: 17826982 [TBL] [Abstract][Full Text] [Related]
47. Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture. Zhu X; Xie X; Liao Q; Wang Y; Lee D Bioresour Technol; 2011 Sep; 102(18):8696-9. PubMed ID: 21411314 [TBL] [Abstract][Full Text] [Related]
48. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Sekar N; Umasankar Y; Ramasamy RP Phys Chem Chem Phys; 2014 May; 16(17):7862-71. PubMed ID: 24643249 [TBL] [Abstract][Full Text] [Related]
49. Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor. Han L; Tricard S; Fang J; Zhao J; Shen W Biosens Bioelectron; 2013 May; 43():120-4. PubMed ID: 23291615 [TBL] [Abstract][Full Text] [Related]
50. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Tang X; Li H; Du Z; Ng HY Bioresour Technol; 2014 Jul; 164():184-8. PubMed ID: 24859209 [TBL] [Abstract][Full Text] [Related]
51. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Park DH; Zeikus JG Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258 [TBL] [Abstract][Full Text] [Related]
53. Laccase-Prussian blue film-graphene doped carbon paste modified electrode for carbamate pesticides quantification. Oliveira TM; Fátima Barroso M; Morais S; Araújo M; Freire C; de Lima-Neto P; Correia AN; Oliveira MB; Delerue-Matos C Biosens Bioelectron; 2013 Sep; 47():292-9. PubMed ID: 23587791 [TBL] [Abstract][Full Text] [Related]
54. Mediator-free enzymatic electrosynthesis of formate by the Methanococcus maripaludis heterodisulfide reductase supercomplex. Lienemann M; Deutzmann JS; Milton RD; Sahin M; Spormann AM Bioresour Technol; 2018 Apr; 254():278-283. PubMed ID: 29413934 [TBL] [Abstract][Full Text] [Related]
55. Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides-enriched microbial culture. Leitão P; Rossetti S; Nouws HP; Danko AS; Majone M; Aulenta F Bioresour Technol; 2015 Nov; 195():78-82. PubMed ID: 26099437 [TBL] [Abstract][Full Text] [Related]
56. Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine. Wang L; Tricard S; Yue P; Zhao J; Fang J; Shen W Biosens Bioelectron; 2016 Mar; 77():1112-8. PubMed ID: 26569441 [TBL] [Abstract][Full Text] [Related]
57. Enhanced removal of veterinary antibiotic from wastewater by photoelectroactive biofilm of purple anoxygenic phototroph through photosynthetic electron uptake. Sun J; Yang P; Huang S; Li N; Zhang Y; Yuan Y; Lu X Sci Total Environ; 2020 Apr; 713():136605. PubMed ID: 31951842 [TBL] [Abstract][Full Text] [Related]
58. Lipid remodeling in Rhodopseudomonas palustris TIE-1 upon loss of hopanoids and hopanoid methylation. Neubauer C; Dalleska NF; Cowley ES; Shikuma NJ; Wu CH; Sessions AL; Newman DK Geobiology; 2015 Sep; 13(5):443-53. PubMed ID: 25923996 [TBL] [Abstract][Full Text] [Related]
59. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. Gupta D; Guzman MS; Bose A J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):863-876. PubMed ID: 32930890 [TBL] [Abstract][Full Text] [Related]
60. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Choi O; Kim T; Woo HM; Um Y Sci Rep; 2014 Nov; 4():6961. PubMed ID: 25376371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]