These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29655138)

  • 1. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating.
    Maurer JA; Miller MJ; Bartolucci SF
    J Colloid Interface Sci; 2018 Aug; 524():204-208. PubMed ID: 29655138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic receding contact line dynamics on pillar and irregular superhydrophobic surfaces.
    Yeong YH; Milionis A; Loth E; Bayer IS
    Sci Rep; 2015 Feb; 5():8384. PubMed ID: 25670630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic wetting of human blood and plasma on various surfaces.
    Milionis A; Krishnan KG; Loth E; Lawrence M
    Colloids Surf B Biointerfaces; 2018 Jun; 166():218-223. PubMed ID: 29597155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile approach to develop anti-corrosive superhydrophobic aluminium with high mechanical, chemical and thermal durability.
    Tudu BK; Kumar A; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2138):20180272. PubMed ID: 30967066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces.
    Krasowska M; Ferrari M; Liggieri L; Malysa K
    Phys Chem Chem Phys; 2011 May; 13(20):9452-7. PubMed ID: 21479322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.
    Xu QF; Liu Y; Lin FJ; Mondal B; Lyons AM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8915-24. PubMed ID: 23889192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic graphene foams.
    Singh E; Chen Z; Houshmand F; Ren W; Peles Y; Cheng HM; Koratkar N
    Small; 2013 Jan; 9(1):75-80. PubMed ID: 22911509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent, self-cleaning and waterproof surfaces with tunable micro/nano dual-scale structures.
    Lee Y; You EA; Ha YG
    Nanotechnology; 2016 Sep; 27(35):355701. PubMed ID: 27454653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites.
    Han Z; Tay B; Tan C; Shakerzadeh M; Ostrikov KK
    ACS Nano; 2009 Oct; 3(10):3031-6. PubMed ID: 19754132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic Breakdown of Nanostructured Surfaces Characterized in Situ Using ATR-FTIR.
    Vrancken N; Sergeant S; Vereecke G; Doumen G; Holsteyns F; Terryn H; De Gendt S; Xu X
    Langmuir; 2017 Apr; 33(15):3601-3609. PubMed ID: 28335608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Facile Way to Fabricate Transparent Superhydrophobic Surfaces.
    Shi W; He R; Yunus DE; Yang J; Liu Y
    J Nanosci Nanotechnol; 2018 Jul; 18(7):5082-5087. PubMed ID: 29442697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.
    Han JT; Kim BK; Woo JS; Jang JI; Cho JY; Jeong HJ; Jeong SY; Seo SH; Lee GW
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7780-7786. PubMed ID: 28155268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ ATR-FTIR for dynamic analysis of superhydrophobic breakdown on nanostructured silicon surfaces.
    Vrancken N; Li J; Sergeant S; Vereecke G; Doumen G; Holsteyns F; Chen C; Terryn H; De Gendt S; Xu X
    Sci Rep; 2018 Aug; 8(1):11637. PubMed ID: 30072798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.
    Nine MJ; Cole MA; Johnson L; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28482-93. PubMed ID: 26632960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.