BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29655319)

  • 21. Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors.
    Ratajczak T; Ward BK; Cluning C; Allan RK
    Int J Biochem Cell Biol; 2009; 41(8-9):1652-5. PubMed ID: 19433306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain.
    Llabrés S; Tsenkov MI; MacGowan SA; Barton GJ; Zachariae U
    J Struct Biol; 2020 Jan; 209(1):107405. PubMed ID: 31628985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure.
    Carrigan PE; Sikkink LA; Smith DF; Ramirez-Alvarado M
    Protein Sci; 2006 Mar; 15(3):522-32. PubMed ID: 16452615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome.
    Tenge VR; Zuehlke AD; Shrestha N; Johnson JL
    Eukaryot Cell; 2015 Jan; 14(1):55-63. PubMed ID: 25380751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of immunophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants.
    Owens-Grillo JK; Stancato LF; Hoffmann K; Pratt WB; Krishna P
    Biochemistry; 1996 Dec; 35(48):15249-55. PubMed ID: 8952474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation.
    Warth R; Briand PA; Picard D
    Biol Chem; 1997 May; 378(5):381-91. PubMed ID: 9191025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 1.88 A crystal structure of the C domain of hCyP33: a novel domain of peptidyl-prolyl cis-trans isomerase.
    Wang T; Yun CH; Gu SY; Chang WR; Liang DC
    Biochem Biophys Res Commun; 2005 Aug; 333(3):845-9. PubMed ID: 15963461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants.
    Chen S; Sullivan WP; Toft DO; Smith DF
    Cell Stress Chaperones; 1998 Jun; 3(2):118-29. PubMed ID: 9672247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40.
    Pirkl F; Buchner J
    J Mol Biol; 2001 May; 308(4):795-806. PubMed ID: 11350175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and biological characterisation of the gut-associated cyclophilin B isoforms from Caenorhabditis elegans.
    Picken NC; Eschenlauer S; Taylor P; Page AP; Walkinshaw MD
    J Mol Biol; 2002 Sep; 322(1):15-25. PubMed ID: 12215411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins.
    Ernst K; Langer S; Kaiser E; Osseforth C; Michaelis J; Popoff MR; Schwan C; Aktories K; Kahlert V; Malesevic M; Schiene-Fischer C; Barth H
    J Mol Biol; 2015 Mar; 427(6 Pt A):1224-38. PubMed ID: 25058685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of a complex between human spliceosomal cyclophilin H and a U4/U6 snRNP-60K peptide.
    Reidt U; Wahl MC; Fasshauer D; Horowitz DS; Lührmann R; Ficner R
    J Mol Biol; 2003 Aug; 331(1):45-56. PubMed ID: 12875835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of cyclophilin and its partners.
    Ke H; Huai Q
    Front Biosci; 2004 Sep; 9():2285-96. PubMed ID: 15353287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain.
    Galigniana MD; Harrell JM; Murphy PJ; Chinkers M; Radanyi C; Renoir JM; Zhang M; Pratt WB
    Biochemistry; 2002 Nov; 41(46):13602-10. PubMed ID: 12427021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the cross-reactivity and of the 1.5 A crystal structure of the Malassezia sympodialis Mala s 6 allergen, a member of the cyclophilin pan-allergen family.
    Glaser AG; Limacher A; Flückiger S; Scheynius A; Scapozza L; Crameri R
    Biochem J; 2006 May; 396(1):41-9. PubMed ID: 16483252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of an atypical region from a staphylococcal cyclophilin affects its structure, function, stability, and shape.
    Seal S; Chowdhury N; Biswas R; Chakraborty T; Sinha D; Bagchi A; Sau S
    Int J Biol Macromol; 2020 May; 151():1287-1298. PubMed ID: 31751734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression, purification and assessment of cyclosporin binding of a family of cyclophilins and cyclophilin-like proteins of the human malarial parasite Plasmodium falciparum.
    Marín-Menéndez A; Bell A
    Protein Expr Purif; 2011 Aug; 78(2):225-34. PubMed ID: 21549842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps.
    Jakob RP; Schmidpeter PA; Koch JR; Schmid FX; Maier T
    PLoS One; 2016; 11(6):e0157070. PubMed ID: 27276069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.