These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 29655334)
1. Low-lying excited states by constrained DFT. Ramos P; Pavanello M J Chem Phys; 2018 Apr; 148(14):144103. PubMed ID: 29655334 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic couplings from a variational excited state method based on constrained DFT. Ramos P; Pavanello M J Chem Phys; 2021 Jan; 154(1):014110. PubMed ID: 33412866 [TBL] [Abstract][Full Text] [Related]
3. Transition-Based Constrained DFT for the Robust and Reliable Treatment of Excitations in Supramolecular Systems. Stella M; Thapa K; Genovese L; Ratcliff LE J Chem Theory Comput; 2022 May; 18(5):3027-3038. PubMed ID: 35471972 [TBL] [Abstract][Full Text] [Related]
4. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems. Herbert JM; Zhang X; Morrison AF; Liu J Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899 [TBL] [Abstract][Full Text] [Related]
5. The Simplest Possible Approach for Simulating S Teh HH; Subotnik JE J Phys Chem Lett; 2019 Jun; 10(12):3426-3432. PubMed ID: 31135162 [TBL] [Abstract][Full Text] [Related]
6. Excited-State Potential Energy Surfaces, Conical Intersections, and Analytical Gradients from Ground-State Density Functional Theory. Mei Y; Yang W J Phys Chem Lett; 2019 May; 10(10):2538-2545. PubMed ID: 31038964 [TBL] [Abstract][Full Text] [Related]
7. Analytic energy gradients for constrained DFT-configuration interaction. Kaduk B; Tsuchimochi T; Van Voorhis T J Chem Phys; 2014 May; 140(18):18A503. PubMed ID: 24832311 [TBL] [Abstract][Full Text] [Related]
8. Communication: Conical intersections using constrained density functional theory-configuration interaction. Kaduk B; Van Voorhis T J Chem Phys; 2010 Aug; 133(6):061102. PubMed ID: 20707553 [TBL] [Abstract][Full Text] [Related]
9. A Constraint-Based Orbital-Optimized Excited State Method (COOX). Kussmann J; Lemke Y; Weinbrenner A; Ochsenfeld C J Chem Theory Comput; 2024 Oct; 20(19):8461-8473. PubMed ID: 39345090 [TBL] [Abstract][Full Text] [Related]
10. Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane. Huix-Rotllant M; Natarajan B; Ipatov A; Wawire CM; Deutsch T; Casida ME Phys Chem Chem Phys; 2010 Oct; 12(39):12811-25. PubMed ID: 20820556 [TBL] [Abstract][Full Text] [Related]
11. Excited State Orbital Optimization via Minimizing the Square of the Gradient: General Approach and Application to Singly and Doubly Excited States via Density Functional Theory. Hait D; Head-Gordon M J Chem Theory Comput; 2020 Mar; 16(3):1699-1710. PubMed ID: 32017554 [TBL] [Abstract][Full Text] [Related]
12. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach. Casanova D J Chem Phys; 2012 Aug; 137(8):084105. PubMed ID: 22938216 [TBL] [Abstract][Full Text] [Related]
13. Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. Pijeau S; Hohenstein EG J Chem Theory Comput; 2017 Mar; 13(3):1130-1146. PubMed ID: 28157312 [TBL] [Abstract][Full Text] [Related]
14. Absolutely Localized Projection-Based Embedding for Excited States. Wen X; Graham DS; Chulhai DV; Goodpaster JD J Chem Theory Comput; 2020 Jan; 16(1):385-398. PubMed ID: 31769981 [TBL] [Abstract][Full Text] [Related]
15. Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections. Li SL; Marenich AV; Xu X; Truhlar DG J Phys Chem Lett; 2014 Jan; 5(2):322-8. PubMed ID: 26270707 [TBL] [Abstract][Full Text] [Related]
16. Efficient Implementation of Local Excitation Approximation for Treating Excited States of Molecules in Condensed Phase. Zhang C; Yuan D; Guo Y; Li S J Chem Theory Comput; 2014 Dec; 10(12):5308-17. PubMed ID: 26583214 [TBL] [Abstract][Full Text] [Related]
17. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT). Maurer RJ; Reuter K J Chem Phys; 2013 Jul; 139(1):014708. PubMed ID: 23822321 [TBL] [Abstract][Full Text] [Related]
18. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site. Bertini L; Greco C; De Gioia L; Fantucci P J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958 [TBL] [Abstract][Full Text] [Related]
19. Self-consistent Formulation of Constricted Variational Density Functional Theory with Orbital Relaxation. Implementation and Applications. Krykunov M; Ziegler T J Chem Theory Comput; 2013 Jun; 9(6):2761-73. PubMed ID: 26583867 [TBL] [Abstract][Full Text] [Related]
20. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces. Zhang X; Herbert JM J Chem Phys; 2015 Dec; 143(23):234107. PubMed ID: 26696046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]