These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29655362)

  • 1. Clustering methods for the optimization of atomic cluster structure.
    Bagattini F; Schoen F; Tigli L
    J Chem Phys; 2018 Apr; 148(14):144102. PubMed ID: 29655362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies.
    Meldgaard SA; Kolsbjerg EL; Hammer B
    J Chem Phys; 2018 Oct; 149(13):134104. PubMed ID: 30292199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unbiased fuzzy global optimization of Lennard-Jones clusters for N ≤ 1000.
    Yu K; Wang X; Chen L; Wang L
    J Chem Phys; 2019 Dec; 151(21):214105. PubMed ID: 31822070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Evolutionary Algorithms with Clustering toward Rational Global Structure Optimization at the Atomic Scale.
    Jørgensen MS; Groves MN; Hammer B
    J Chem Theory Comput; 2017 Mar; 13(3):1486-1493. PubMed ID: 28186745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic lattice searching method for fast optimization of Lennard-Jones clusters.
    Shao X; Cheng L; Cai W
    J Comput Chem; 2004 Nov; 25(14):1693-8. PubMed ID: 15362126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic data.
    Zhu Y; Li H; Miller DJ; Wang Z; Xuan J; Clarke R; Hoffman EP; Wang Y
    BMC Bioinformatics; 2008 Sep; 9():383. PubMed ID: 18801195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic lattice searching method with constructed core for optimization of large Lennard-Jones clusters.
    Yang X; Cai W; Shao X
    J Comput Chem; 2007 Jun; 28(8):1427-33. PubMed ID: 17330880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Local and Global Discriminative Framework and Optimization for Balanced Clustering.
    Han J; Liu H; Nie F
    IEEE Trans Neural Netw Learn Syst; 2019 Oct; 30(10):3059-3071. PubMed ID: 30334771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles.
    Rondina GG; Da Silva JL
    J Chem Inf Model; 2013 Sep; 53(9):2282-98. PubMed ID: 23957311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure search method for atomic clusters based on the dividing rectangles algorithm.
    Kanayama K; Seko A; Toyoura K
    Phys Rev E; 2023 Sep; 108(3-2):035303. PubMed ID: 37849110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.
    Fong S; Deb S; Yang XS; Zhuang Y
    ScientificWorldJournal; 2014; 2014():564829. PubMed ID: 25202730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving data retrieval quality: Evidence based medicine perspective.
    Kamalov M; Dobrynin V; Balykina J; Kolbin A; Verbitskaya E; Kasimova M
    Int J Risk Saf Med; 2015; 27 Suppl 1():S106-7. PubMed ID: 26639684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous extremal optimization for Lennard-Jones clusters.
    Zhou T; Bai WJ; Cheng LJ; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016702. PubMed ID: 16090129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved space breakdown method - A robust clustering technique for spike sorting.
    Ardelean ER; Ichim AM; Dînşoreanu M; Mureşan RC
    Front Comput Neurosci; 2023; 17():1019637. PubMed ID: 36890966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual MRI: merging information visualization and non-parametric clustering techniques for MRI dataset analysis.
    Castellani U; Cristani M; Combi C; Murino V; Sbarbati A; Marzola P
    Artif Intell Med; 2008 Nov; 44(3):183-99. PubMed ID: 18775655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-weighted Discriminatively Embedded K-Means for Multi-view Clustering.
    Xu J; Han J; Nie F; Li X
    IEEE Trans Image Process; 2017 Jun; 26(6):3016-3027. PubMed ID: 28186894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.
    Aadil F; Raza A; Khan MF; Maqsood M; Mehmood I; Rho S
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry optimization of atomic clusters using a heuristic method with dynamic lattice searching.
    Lai X; Huang W; Xu R
    J Phys Chem A; 2011 May; 115(20):5021-6. PubMed ID: 21526817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information-maximization clustering based on squared-loss mutual information.
    Sugiyama M; Niu G; Yamada M; Kimura M; Hachiya H
    Neural Comput; 2014 Jan; 26(1):84-131. PubMed ID: 24102125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering.
    Yeh WC; Lai CM
    PLoS One; 2015; 10(9):e0137246. PubMed ID: 26348483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.