These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 29655419)
1. A two dimensional metal-organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics. Yang Q; Zhou L; Wu YX; Zhang K; Cao Y; Zhou Y; Wu D; Hu F; Gan N Anal Chim Acta; 2018 Aug; 1020():1-8. PubMed ID: 29655419 [TBL] [Abstract][Full Text] [Related]
2. A Multicolor Fluorescence Nanoprobe Platform Using Two-Dimensional Metal Organic Framework Nanosheets and Double Stirring Bar Assisted Target Replacement for Multiple Bioanalytical Applications. Yang Q; Hong J; Wu YX; Cao Y; Wu D; Hu F; Gan N ACS Appl Mater Interfaces; 2019 Nov; 11(44):41506-41515. PubMed ID: 31580049 [TBL] [Abstract][Full Text] [Related]
3. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays. Hu K; Liu J; Chen J; Huang Y; Zhao S; Tian J; Zhang G Biosens Bioelectron; 2013 Apr; 42():598-602. PubMed ID: 23261695 [TBL] [Abstract][Full Text] [Related]
4. A multiple signal amplified colorimetric aptasensor for antibiotics measurement using DNAzyme labeled Fe-MIL-88-Pt as novel peroxidase mimic tags and CSDP target-triggered cycles. Luan Q; Xiong X; Gan N; Cao Y; Li T; Wu D; Dong Y; Hu F Talanta; 2018 Sep; 187():27-34. PubMed ID: 29853046 [TBL] [Abstract][Full Text] [Related]
5. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Chen M; Gan N; Li T; Wang Y; Xu Q; Chen Y Anal Chim Acta; 2017 May; 968():30-39. PubMed ID: 28395772 [TBL] [Abstract][Full Text] [Related]
6. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Wang Y; Gan N; Zhou Y; Li T; Cao Y; Chen Y Biosens Bioelectron; 2017 Jan; 87():508-513. PubMed ID: 27596250 [TBL] [Abstract][Full Text] [Related]
7. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Wang X; Jiang A; Hou T; Li H; Li F Biosens Bioelectron; 2015 Aug; 70():324-9. PubMed ID: 25840018 [TBL] [Abstract][Full Text] [Related]
8. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Zeng J; Gan N; Zhang K; He L; Lin J; Hu F; Cao Y Talanta; 2019 Jul; 199():491-498. PubMed ID: 30952289 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Huang S; Gan N; Li T; Zhou Y; Cao Y; Dong Y Talanta; 2018 Mar; 179():28-36. PubMed ID: 29310232 [TBL] [Abstract][Full Text] [Related]
10. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJ Chen M; Gan N; Zhou Y; Li T; Xu Q; Cao Y; Chen Y Talanta; 2016 Dec; 161():867-874. PubMed ID: 27769495 [TBL] [Abstract][Full Text] [Related]
11. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes. Zhou L; Gan N; Zhou Y; Li T; Cao Y; Chen Y Talanta; 2017 May; 167():544-549. PubMed ID: 28340759 [TBL] [Abstract][Full Text] [Related]
12. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Xiao K; Liu J; Chen H; Zhang S; Kong J Biosens Bioelectron; 2017 May; 91():76-81. PubMed ID: 27992802 [TBL] [Abstract][Full Text] [Related]
13. A highly sensitive and selective fluorescence biosensor for hepatitis C virus DNA detection based on δ-FeOOH and exonuclease III-assisted signal amplification. Wu T; Li X; Fu Y; Ding X; Li Z; Zhu G; Fan J Talanta; 2020 Mar; 209():120550. PubMed ID: 31891998 [TBL] [Abstract][Full Text] [Related]
14. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification. Ge J; Bai DM; -Geng X; Hu YL; Cai QY; Xing K; Zhang L; Li ZH Mikrochim Acta; 2018 Jan; 185(2):105. PubMed ID: 29594730 [TBL] [Abstract][Full Text] [Related]
15. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide. Li W; Hou T; Wu M; Li F Talanta; 2016; 148():116-21. PubMed ID: 26653431 [TBL] [Abstract][Full Text] [Related]
16. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA. Liu H; Li L; Wang Q; Duan L; Tang B Anal Chem; 2014 Jun; 86(11):5487-93. PubMed ID: 24823448 [TBL] [Abstract][Full Text] [Related]
17. Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy. Shen J; Wang H; Li C; Zhao Y; Yu X; Luo X Biosens Bioelectron; 2017 Apr; 90():356-362. PubMed ID: 27940239 [TBL] [Abstract][Full Text] [Related]
18. Rapid Fluorescent Detection of Enterotoxigenic Escherichia coli (ETEC) K88 Based on Graphene Oxide-Dependent Nanoquencher and Klenow Fragment-Triggered Target Cyclic Amplification. Ling M; Peng Z; Cheng L; Deng L Appl Spectrosc; 2015 Oct; 69(10):1175-81. PubMed ID: 26449811 [TBL] [Abstract][Full Text] [Related]
19. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M; Mirroshandel AA Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850 [TBL] [Abstract][Full Text] [Related]
20. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]