BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29655704)

  • 21. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data.
    Qiu Y; Lu T; Lim H; Xie L
    Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The contribution of mass spectrometry-based proteomics to understanding epigenetics.
    Noberini R; Sigismondo G; Bonaldi T
    Epigenomics; 2016 Mar; 8(3):429-45. PubMed ID: 26606673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphoproteomics in drug discovery.
    Morris MK; Chi A; Melas IN; Alexopoulos LG
    Drug Discov Today; 2014 Apr; 19(4):425-32. PubMed ID: 24141136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating proteomic and phosphoproteomic data for pathway analysis in breast cancer.
    Ren J; Wang B; Li J
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):130. PubMed ID: 30577793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated phosphoproteomics and transcriptional classifiers reveal hidden RAS signaling dynamics in multiple myeloma.
    Lin YT; Way GP; Barwick BG; Mariano MC; Marcoulis M; Ferguson ID; Driessen C; Boise LH; Greene CS; Wiita AP
    Blood Adv; 2019 Nov; 3(21):3214-3227. PubMed ID: 31698452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action.
    Vidović D; Koleti A; Schürer SC
    Front Genet; 2014; 5():342. PubMed ID: 25324859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.
    Nagano K; Shinkawa T; Mutoh H; Kondoh O; Morimoto S; Inomata N; Ashihara M; Ishii N; Aoki Y; Haramura M
    Proteomics; 2009 May; 9(10):2861-74. PubMed ID: 19415658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative proteomic and phosphoproteomic profiling of prostate cell lines.
    Katsogiannou M; Boyer JB; Valdeolivas A; Remy E; Calzone L; Audebert S; Rocchi P; Camoin L; Baudot A
    PLoS One; 2019; 14(11):e0224148. PubMed ID: 31675377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.
    Tsai CF; Wang YT; Yen HY; Tsou CC; Ku WC; Lin PY; Chen HY; Nesvizhskii AI; Ishihama Y; Chen YJ
    Nat Commun; 2015 Mar; 6():6622. PubMed ID: 25814448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Proteomic Connectivity Map.
    Feller C; Aebersold R
    Cell Syst; 2018 Apr; 6(4):403-405. PubMed ID: 29698646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating intraclonal heterogeneity and subpopulation changes from bulk expression profiles in CMap.
    Hsieh CY; Tu CC; Hung JH
    Life Sci Alliance; 2022 Oct; 5(10):. PubMed ID: 35688486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LINCS Data Portal 2.0: next generation access point for perturbation-response signatures.
    Stathias V; Turner J; Koleti A; Vidovic D; Cooper D; Fazel-Najafabadi M; Pilarczyk M; Terryn R; Chung C; Umeano A; Clarke DJB; Lachmann A; Evangelista JE; Ma'ayan A; Medvedovic M; Schürer SC
    Nucleic Acids Res; 2020 Jan; 48(D1):D431-D439. PubMed ID: 31701147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examining Cellular Responses to Kinase Drug Inhibition Through Phosphoproteome Mapping of Substrates.
    Bucio-Noble D; Semaan C; Molloy MP
    Methods Mol Biol; 2019; 1888():141-152. PubMed ID: 30519945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology.
    Janssen KA; Sidoli S; Garcia BA
    Methods Enzymol; 2017; 586():359-378. PubMed ID: 28137571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ProteomeCommons.org IO Framework: reading and writing multiple proteomics data formats.
    Falkner JA; Falkner JW; Andrews PC
    Bioinformatics; 2007 Jan; 23(2):262-3. PubMed ID: 17121776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathway-Informed Discovery and Targeted Proteomic Workflows Using Mass Spectrometry.
    Chu CS; Miller CA; Gieschen A; Fischer SM
    Methods Mol Biol; 2017; 1550():199-221. PubMed ID: 28188532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS.
    Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Illuminating signaling network functional biology through quantitative phosphoproteomic mass spectrometry.
    Tedford NC; White FM; Radding JA
    Brief Funct Genomic Proteomic; 2008 Sep; 7(5):383-94. PubMed ID: 18836207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics.
    Tedford NC; Hall AB; Graham JR; Murphy CE; Gordon NF; Radding JA
    Proteomics; 2009 Mar; 9(6):1469-87. PubMed ID: 19294625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.