These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29655712)

  • 21. Improved starch recovery from potatoes by enzymes and reduced water holding of the residual fibres.
    Ramasamy UR; Lips S; Bakker R; Gruppen H; Kabel MA
    Carbohydr Polym; 2014 Nov; 113():256-63. PubMed ID: 25256483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to
    Yu X; Wilson R; Balotf S; Tegg RS; Eyles A; Wilson CR
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.
    Parmar I; Rupasinghe HP
    Bioresour Technol; 2013 Feb; 130():613-20. PubMed ID: 23334018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and Degradation of Pectic Polysaccharides in Cocoa Pulp.
    Meersman E; Struyf N; Kyomugasho C; Jamsazzadeh Kermani Z; Santiago JS; Baert E; Hemdane S; Vrancken G; Verstrepen KJ; Courtin CM; Hendrickx M; Steensels J
    J Agric Food Chem; 2017 Nov; 65(44):9726-9734. PubMed ID: 29032689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation kinetics and structural characteristics of pectin under simultaneous sonochemical-enzymatic functions.
    Ma X; Wang W; Wang D; Ding T; Ye X; Liu D
    Carbohydr Polym; 2016 Dec; 154():176-85. PubMed ID: 27577908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethanol production from potato peel waste (PPW).
    Arapoglou D; Varzakas T; Vlyssides A; Israilides C
    Waste Manag; 2010 Oct; 30(10):1898-902. PubMed ID: 20471817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes.
    Wilkins MR; Widmer WW; Grohmann K; Cameron RG
    Bioresour Technol; 2007 May; 98(8):1596-601. PubMed ID: 16934453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural features and water holding capacities of pressed potato fibre polysaccharides.
    Ramaswamy UR; Kabel MA; Schols HA; Gruppen H
    Carbohydr Polym; 2013 Apr; 93(2):589-96. PubMed ID: 23499100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase.
    Kozioł A; Cybulska J; Pieczywek PM; Zdunek A
    Carbohydr Polym; 2017 Apr; 161():197-207. PubMed ID: 28189229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrolysis of pectin: an enzymatic approach and its application in banana fiber processing.
    Jacob N; Niladevi KN; Anisha GS; Prema P
    Microbiol Res; 2008; 163(5):538-44. PubMed ID: 16962301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of enzymatic modification and ultrafiltration for the production of pectin fractions with highly potent antioxidant capacity as green valorization of sugar beet pulp.
    Antov MG; Perović MN; Milošević MM
    Bioprocess Biosyst Eng; 2023 Jan; 46(1):157-164. PubMed ID: 36512087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative determination of galacturonic acid in pectin and pectin products by combined pectinase hydrolysis and HPLC determination.
    Li D; Hua X; Luo J; Xu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Mar; 40(3):319-327. PubMed ID: 36649318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction, structure, and emulsifying properties of pectin from potato pulp.
    Yang JS; Mu TH; Ma MM
    Food Chem; 2018 Apr; 244():197-205. PubMed ID: 29120771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of potato fibre to improve bread physico-chemical properties during storage.
    Curti E; Carini E; Diantom A; Vittadini E
    Food Chem; 2016 Mar; 195():64-70. PubMed ID: 26575713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes.
    Zhang M; Su R; Qi W; He Z
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1407-14. PubMed ID: 19288067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs.
    Taciak M; Barszcz M; Święch E; Tuśnio A; Bachanek I
    Arch Anim Nutr; 2017 Jun; 71(3):192-209. PubMed ID: 28429993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment.
    Muñoz-Almagro N; Montilla A; Moreno FJ; Villamiel M
    Ultrason Sonochem; 2017 Sep; 38():807-819. PubMed ID: 27993542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes?
    Esteghlalian AR; Bilodeau M; Mansfield SD; Saddler JN
    Biotechnol Prog; 2001; 17(6):1049-54. PubMed ID: 11735439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between pectin and cellulose in primary plant cell walls.
    Broxterman SE; Schols HA
    Carbohydr Polym; 2018 Jul; 192():263-272. PubMed ID: 29691020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance.
    Wang T; Park YB; Cosgrove DJ; Hong M
    Plant Physiol; 2015 Jul; 168(3):871-84. PubMed ID: 26036615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.