BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 29655714)

  • 1. The influence of food matrices on aptamer selection by SELEX (systematic evolution of ligands by exponential enrichment) targeting the norovirus P-Domain.
    Schilling KB; DeGrasse J; Woods JW
    Food Chem; 2018 Aug; 258():129-136. PubMed ID: 29655714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers.
    Schilling-Loeffler K; Rodriguez R; Williams-Woods J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain.
    Moore MD; Escudero-Abarca BI; Suh SH; Jaykus LA
    J Biotechnol; 2015 Sep; 209():41-9. PubMed ID: 26080079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of a DNA aptamer against norovirus capsid protein VP1.
    Beier R; Pahlke C; Quenzel P; Henseleit A; Boschke E; Cuniberti G; Labudde D
    FEMS Microbiol Lett; 2014 Feb; 351(2):162-9. PubMed ID: 24372686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses.
    Liu D; Zhang Z; Yin Y; Jia F; Wu Q; Tian P; Wang D
    Talanta; 2019 Feb; 193():199-205. PubMed ID: 30368291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-SELEX: in vitro selection of synthetic small specific ligands.
    Dickinson H; Lukasser M; Mayer G; Hüttenhofer A
    Methods Mol Biol; 2015; 1296():213-24. PubMed ID: 25791604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of aptamers for targeted therapeutics.
    Ray P; Viles KD; Soule EE; Woodruff RS
    Arch Immunol Ther Exp (Warsz); 2013 Aug; 61(4):255-71. PubMed ID: 23563807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advancements in complex target systematic evolution of ligands by exponential enrichment].
    Wu Z; Xue S; Yang Y
    Se Pu; 2018 Oct; 36(10):947-951. PubMed ID: 30378352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for eliminating fixed-region interference of aptamer binding during SELEX.
    Ouellet E; Lagally ET; Cheung KC; Haynes CA
    Biotechnol Bioeng; 2014 Nov; 111(11):2265-79. PubMed ID: 24895227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Enzyme-Linked Aptamer Sorbent Assay to Evaluate Aptamer Binding.
    Moore MD; Escudero-Abarca BI; Jaykus LA
    Methods Mol Biol; 2017; 1575():291-302. PubMed ID: 28255888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.
    Luo Z; Zhou H; Jiang H; Ou H; Li X; Zhang L
    Analyst; 2015 Apr; 140(8):2664-70. PubMed ID: 25728760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures.
    Rahimizadeh K; AlShamaileh H; Fratini M; Chakravarthy M; Stephen M; Shigdar S; Veedu RN
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization.
    Tan SY; Acquah C; Sidhu A; Ongkudon CM; Yon LS; Danquah MK
    Crit Rev Anal Chem; 2016 Nov; 46(6):521-37. PubMed ID: 26980177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current approaches in SELEX: An update to aptamer selection technology.
    Darmostuk M; Rimpelova S; Gbelcova H; Ruml T
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1141-61. PubMed ID: 25708387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute quantification of cell-bound DNA aptamers during SELEX.
    Avci-Adali M; Wilhelm N; Perle N; Stoll H; Schlensak C; Wendel HP
    Nucleic Acid Ther; 2013 Apr; 23(2):125-30. PubMed ID: 23405949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
    Stoltenburg R; Schubert T; Strehlitz B
    PLoS One; 2015; 10(7):e0134403. PubMed ID: 26221730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets.
    Mondal B; Ramlal S; Lavu PS; Murali HS; Batra HV
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9791-803. PubMed ID: 26293334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.