BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29655745)

  • 1. Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants.
    Zhou Y; Peng Q; Zeng L; Tang J; Li J; Dong F; Yang Z
    Food Chem; 2018 Aug; 258():352-358. PubMed ID: 29655745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of Differential Accumulation of 1-Phenylethanol in Flowers and Leaves of Tea (Camellia sinensis) Plants.
    Dong F; Zhou Y; Zeng L; Peng Q; Chen Y; Zhang L; Su X; Watanabe N; Yang Z
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27563859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of L-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling.
    Dong F; Yang Z; Baldermann S; Kajitani Y; Ota S; Kasuga H; Imazeki Y; Ohnishi T; Watanabe N
    J Plant Physiol; 2012 Feb; 169(3):217-25. PubMed ID: 22209218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing Temperature Changes Flux into Multiple Biosynthetic Pathways for 2-Phenylethanol in Model Systems of Tea (
    Zeng L; Tan H; Liao Y; Jian G; Kang M; Dong F; Watanabe N; Yang Z
    J Agric Food Chem; 2019 Sep; 67(36):10145-10154. PubMed ID: 31418564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the Production of 1-Phenylethanol Using Enzymes from Flowers of Tea (Camellia sinensis) Plants.
    Dong F; Zhou Y; Zeng L; Watanabe N; Su X; Yang Z
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28098803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers.
    Zhou Y; Dong F; Kunimasa A; Zhang Y; Cheng S; Lu J; Zhang L; Murata A; Mayer F; Fleischmann P; Watanabe N; Yang Z
    J Agric Food Chem; 2014 Aug; 62(32):8042-50. PubMed ID: 25065942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers.
    Zhou Y; Peng Q; Zhang L; Cheng S; Zeng L; Dong F; Yang Z
    Food Chem; 2019 May; 280():27-33. PubMed ID: 30642496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis).
    Zhou Y; Zeng L; Gui J; Liao Y; Li J; Tang J; Meng Q; Dong F; Yang Z
    Food Res Int; 2017 Jun; 96():206-214. PubMed ID: 28528101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Pathway of Benzyl Nitrile Derived from l-Phenylalanine in Tea (
    Liao Y; Zeng L; Tan H; Cheng S; Dong F; Yang Z
    J Agric Food Chem; 2020 Feb; 68(5):1397-1404. PubMed ID: 31917559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the Biochemical Formation Pathway of the Amino Acid l-Theanine in Tea (Camellia sinensis) and Other Plants.
    Cheng S; Fu X; Wang X; Liao Y; Zeng L; Dong F; Yang Z
    J Agric Food Chem; 2017 Aug; 65(33):7210-7216. PubMed ID: 28796499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves.
    Wang X; Zeng L; Liao Y; Zhou Y; Xu X; Dong F; Yang Z
    Food Chem; 2019 Jan; 270():17-24. PubMed ID: 30174031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil nutrient deficiency decreases the postharvest quality-related metabolite contents of tea (Camellia sinensis (L.) Kuntze) leaves.
    Zhou B; Chen Y; Zeng L; Cui Y; Li J; Tang H; Liu J; Tang J
    Food Chem; 2022 May; 377():132003. PubMed ID: 35008025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves.
    Cheng S; Fu X; Liao Y; Xu X; Zeng L; Tang J; Li J; Lai J; Yang Z
    Food Chem; 2019 Mar; 276():93-100. PubMed ID: 30409668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative Pathway to the Formation of
    Zeng L; Wang X; Tan H; Liao Y; Xu P; Kang M; Dong F; Yang Z
    J Agric Food Chem; 2020 Mar; 68(11):3415-3424. PubMed ID: 32078319
    [No Abstract]   [Full Text] [Related]  

  • 15. Integration of Metabolome and Transcriptome Reveals the Relationship of Benzenoid-Phenylpropanoid Pigment and Aroma in Purple Tea Flowers.
    Mei X; Wan S; Lin C; Zhou C; Hu L; Deng C; Zhang L
    Front Plant Sci; 2021; 12():762330. PubMed ID: 34887890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource.
    Chen Y; Zhou Y; Zeng L; Dong F; Tu Y; Yang Z
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29596355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (
    Zeng L; Watanabe N; Yang Z
    Crit Rev Food Sci Nutr; 2019; 59(14):2321-2334. PubMed ID: 30277806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry.
    Liao Y; Fu X; Zhou H; Rao W; Zeng L; Yang Z
    Food Chem; 2019 Sep; 292():204-210. PubMed ID: 31054666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Characterization of An
    Peng Q; Zhou Y; Liao Y; Zeng L; Xu X; Jia Y; Dong F; Li J; Tang J; Yang Z
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30126188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral and metabolic profiles in tea leaves and flowers during flower development.
    Jia S; Wang Y; Hu J; Ding Z; Liang Q; Zhang Y; Wang H
    Plant Physiol Biochem; 2016 Sep; 106():316-26. PubMed ID: 27372442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.