These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29655922)

  • 41. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.
    Provazi K; Campos BA; Espinosa DC; Tenório JA
    Waste Manag; 2011 Jan; 31(1):59-64. PubMed ID: 20880689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective separation and recovery of lithium, nickel, MnO
    He H; Feng J; Gao X; Fei X
    Chemosphere; 2022 Jan; 286(Pt 3):131897. PubMed ID: 34399252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system.
    Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W
    Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate.
    Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z
    Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.
    Boxall NJ; Adamek N; Cheng KY; Haque N; Bruckard W; Kaksonen AH
    Waste Manag; 2018 Apr; 74():435-445. PubMed ID: 29317159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of nickel and cadmium from battery waste by a chemical method using ferric sulphate.
    Jadhav UU; Hocheng H
    Environ Technol; 2014; 35(9-12):1263-8. PubMed ID: 24701923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recovery of manganese and zinc from waste Zn-C cell powder: Characterization and leaching.
    Biswas RK; Karmakar AK; Kumar SL; Hossain MN
    Waste Manag; 2015 Dec; 46():529-35. PubMed ID: 26387051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Waste battery treatment options: comparing their environmental performance.
    Briffaerts K; Spirinckx C; Van der Linden A; Vrancken K
    Waste Manag; 2009 Aug; 29(8):2321-31. PubMed ID: 19386482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact on global metal flows arising from the use of portable rechargeable batteries.
    Rydh CJ; Svärd B
    Sci Total Environ; 2003 Jan; 302(1-3):167-84. PubMed ID: 12526907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries.
    Boxall NJ; Cheng KY; Bruckard W; Kaksonen AH
    J Hazard Mater; 2018 Oct; 360():504-511. PubMed ID: 30144769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recovery of critical metals from EV batteries via thermal treatment and leaching with sulphuric acid at ambient temperature.
    Petranikova M; Naharro PL; Vieceli N; Lombardo G; Ebin B
    Waste Manag; 2022 Mar; 140():164-172. PubMed ID: 34836727
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leaching of NMC industrial black mass in the presence of LFP.
    Zou Y; Chernyaev A; Ossama M; Seisko S; Lundström M
    Sci Rep; 2024 May; 14(1):10818. PubMed ID: 38734772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.