These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 2965604)

  • 21. Spatio-temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage.
    Simon HA; Dasi LP; Leo HL; Yoganathan AP
    Ann Biomed Eng; 2007 Aug; 35(8):1333-46. PubMed ID: 17431789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro fluid dynamic characteristics of Ionescu-Shiley and Carpentier-Edwards tissue bioprostheses.
    Yoganathan AP; Woo YR; Williams FP; Stevenson DM; Franch RH; Harrison EC
    Artif Organs; 1983 Nov; 7(4):459-69. PubMed ID: 6651586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser anemometry measurements of steady flow past aortic valve prostheses.
    Chew YT; Low HT; Lee CN; Kwa SS
    J Biomech Eng; 1993 Aug; 115(3):290-8. PubMed ID: 8231145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries-Insights From Quasi-Steady State Simulations.
    Mirza A; Ramaswamy S
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turbulent stresses in the region of aortic and pulmonary valves.
    Stein PD; Walburn FJ; Sabbah HN
    J Biomech Eng; 1982 Aug; 104(3):238-44. PubMed ID: 7120950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model.
    Perktold K; Resch M; Florian H
    J Biomech Eng; 1991 Nov; 113(4):464-75. PubMed ID: 1762445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computation of flow fields and shear rates in an aortic bifurcation.
    Lee D; Chiu JJ
    Front Med Biol Eng; 1993; 5(1):23-9. PubMed ID: 8323879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis.
    Woo YR; Yoganathan AP
    Scand J Thorac Cardiovasc Surg; 1986; 20(1):15-28. PubMed ID: 2939558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turbulent stress measurements downstream of six mechanical aortic valves in a pulsatile flow model.
    Hasenkam JM; Nygaard H; Giersiepen M; Reul H; Stødkilde-Jørgensen H
    J Biomech; 1988; 21(8):631-45. PubMed ID: 3170618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition to Turbulence Downstream of a Stenosis for Whole Blood and a Newtonian Analog Under Steady Flow Conditions.
    Costa RP; Simplice Talla Nwotchouang B; Yao J; Biswas D; Casey D; McKenzie R; Steinman DA; Loth F
    J Biomech Eng; 2022 Mar; 144(3):. PubMed ID: 34505131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):171-82. PubMed ID: 21416247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A; Tarbell JM
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of Reynolds shear stresses during pulsatile flow in the region of aortic valves.
    Walburn FJ; Sabbah HN; Stein PD
    Ann Biomed Eng; 1985; 13(1):17-23. PubMed ID: 4003870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.