BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 29656156)

  • 1. Ammonia sensing by closely packed WO
    Wang CY; Zhang X; Rong Q; Hou NN; Yu HQ
    Chemosphere; 2018 Aug; 204():202-209. PubMed ID: 29656156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
    Staerz A; Weimar U; Barsan N
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd-Doped WO
    Ponnusamy R; Chakraborty B; Rout CS
    J Phys Chem B; 2018 Mar; 122(10):2737-2746. PubMed ID: 29455530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and hydrothermal stability of CeO₂-ZrO₂-WO₃ for the selective catalytic reduction of NOx with NH₃.
    Song Z; Ning P; Zhang Q; Li H; Zhang J; Wang Y; Liu X; Huang Z
    J Environ Sci (China); 2016 Apr; 42():168-177. PubMed ID: 27090708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers.
    Moon HG; Choi YR; Shim YS; Choi KI; Lee JH; Kim JS; Yoon SJ; Park HH; Kang CY; Jang HW
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10591-6. PubMed ID: 24090094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning.
    Leng JY; Xu XJ; Lv N; Fan HT; Zhang T
    J Colloid Interface Sci; 2011 Apr; 356(1):54-7. PubMed ID: 21220140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic removal of gaseous nitrogen oxides using WO
    Mendoza JA; Lee DH; Kang JH
    Chemosphere; 2017 Sep; 182():539-546. PubMed ID: 28521170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced ammonia sensing performance based on MXene-Ti
    Guo X; Ding Y; Kuang D; Wu Z; Sun X; Du B; Liang C; Wu Y; Qu W; Xiong L; He Y
    J Colloid Interface Sci; 2021 Aug; 595():6-14. PubMed ID: 33813226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved photoelectrochemical properties of tungsten oxide by modification with plasmonic gold nanoparticles for the non-enzymatic sensing of ethanol.
    Li B; Chen Y; Peng A; Chen X; Chen X
    J Colloid Interface Sci; 2019 Mar; 537():528-535. PubMed ID: 30469120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and structural investigations of gel metal oxide composites WO₃-ZrO₂, WO₃-TiO₂, WO₃-ZrO₂-SiO₂, and their evaluation as materials for the preparation of ¹⁸⁸W/¹⁸⁸Re generator.
    Iller E; Wawszczak D; Konior M; Polkowska-Motrenko H; Milczarek JJ; Górski L
    Appl Radiat Isot; 2013 May; 75():115-27. PubMed ID: 23501361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO
    Gao H; Yu Q; Chen K; Sun P; Liu F; Yan X; Liu F; Lu G
    J Colloid Interface Sci; 2019 Feb; 535():458-468. PubMed ID: 30321781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens.
    Zhu Y; Zhao Y; Ma J; Cheng X; Xie J; Xu P; Liu H; Liu H; Zhang H; Wu M; Elzatahry AA; Alghamdi A; Deng Y; Zhao D
    J Am Chem Soc; 2017 Aug; 139(30):10365-10373. PubMed ID: 28683546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of (WO3)n rectangular structures through a LMO-organic precursor route.
    Pang S; Jian F; Wang L
    Inorg Chem; 2008 Jan; 47(1):344-8. PubMed ID: 18052373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective gas detection using Mn
    Sun Y; Yu Z; Wang W; Li P; Li G; Zhang W; Chen L; Zhuivkov S; Hu J
    Beilstein J Nanotechnol; 2019; 10():1423-1433. PubMed ID: 31431854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced nitrogen oxide sensing performance based on tin-doped tungsten oxide nanoplates by a hydrothermal method.
    Wang C; Guo L; Xie N; Kou X; Sun Y; Chuai X; Zhang S; Song H; Wang Y; Lu G
    J Colloid Interface Sci; 2018 Feb; 512():740-749. PubMed ID: 29107925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds.
    Nayak AK; Ghosh R; Santra S; Guha PK; Pradhan D
    Nanoscale; 2015 Aug; 7(29):12460-73. PubMed ID: 26134476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors.
    Akamatsu T; Itoh T; Izu N; Shin W
    Sensors (Basel); 2013 Sep; 13(9):12467-81. PubMed ID: 24048338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black Tungsten Oxide Nanofiber as a Robust Support for Metal Catalysts: High Catalyst Loading for Electrochemical Oxygen Reduction.
    Kim GY; Yoon KR; Shin K; Jung JW; Henkelman G; Ryu WH
    Small; 2021 Nov; 17(47):e2103755. PubMed ID: 34716657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise preparation of WO
    Yuan KP; Zhu LY; Yang JH; Hang CZ; Tao JJ; Ma HP; Jiang AQ; Zhang DW; Lu HL
    J Colloid Interface Sci; 2020 May; 568():81-88. PubMed ID: 32088454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.