BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 29656242)

  • 1. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode.
    Wang Y; Zhai F; Hasebe Y; Jia H; Zhang Z
    Bioelectrochemistry; 2018 Aug; 122():174-182. PubMed ID: 29656242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.
    Sethuraman V; Muthuraja P; Anandha Raj J; Manisankar P
    Biosens Bioelectron; 2016 Oct; 84():112-9. PubMed ID: 26751827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles.
    Song W; Li DW; Li YT; Li Y; Long YT
    Biosens Bioelectron; 2011 Mar; 26(7):3181-6. PubMed ID: 21255992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds.
    Wee Y; Park S; Kwon YH; Ju Y; Yeon KM; Kim J
    Biosens Bioelectron; 2019 May; 132():279-285. PubMed ID: 30884314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface.
    Qu Y; Ma M; Wang Z; Zhan G; Li B; Wang X; Fang H; Zhang H; Li C
    Biosens Bioelectron; 2013 Jun; 44():85-8. PubMed ID: 23395727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN; Lee JE; Lee HJ
    Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles.
    Li YF; Liu ZM; Liu YL; Yang YH; Shen GL; Yu RQ
    Anal Biochem; 2006 Feb; 349(1):33-40. PubMed ID: 16384546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol.
    Wu L; Lu X; Dhanjai ; Wu ZS; Dong Y; Wang X; Zheng S; Chen J
    Biosens Bioelectron; 2018 Jun; 107():69-75. PubMed ID: 29448223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol.
    Tang L; Zhou Y; Zeng G; Li Z; Liu Y; Zhang Y; Chen G; Yang G; Lei X; Wu M
    Analyst; 2013 Jun; 138(12):3552-60. PubMed ID: 23671910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol.
    Nazari M; Kashanian S; Rafipour R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():130-138. PubMed ID: 25770936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic enzyme-graphene oxide interactions.
    Baptista-Pires L; Pérez-López B; Mayorga-Martinez CC; Morales-Narváez E; Domingo N; Esplandiu MJ; Alzina F; Sotomayor-Torres CM; Merkoçi A
    Biosens Bioelectron; 2014 Nov; 61():655-62. PubMed ID: 24976046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor.
    Reza KK; Ali MA; Srivastava S; Agrawal VV; Biradar AM
    Biosens Bioelectron; 2015 Dec; 74():644-51. PubMed ID: 26201981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles.
    Carralero V; Mena ML; Gonzalez-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Biosens Bioelectron; 2006 Dec; 22(5):730-6. PubMed ID: 16569498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water.
    Campanhã Vicentini F; Garcia LL; Figueiredo-Filho LC; Janegitz BC; Fatibello-Filho O
    Enzyme Microb Technol; 2016 Mar; 84():17-23. PubMed ID: 26827770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds.
    Lu L; Zhang L; Zhang X; Huan S; Shen G; Yu R
    Anal Chim Acta; 2010 Apr; 665(2):146-51. PubMed ID: 20417324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a paper-type tyrosinase biosensor for detection of phenolic compounds.
    Şenyurt Ö; Eyidoğan F; Yılmaz R; Öz MT; Özalp VC; Arıca Y; Öktem HA
    Biotechnol Appl Biochem; 2015; 62(1):132-6. PubMed ID: 24847915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.
    Singh RP
    Analyst; 2011 Mar; 136(6):1216-21. PubMed ID: 21240422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electron transfer enhancement of covalently bound tyrosinase to glassy carbon via Woodward's reagent K.
    Faridnouri H; Ghourchian H; Hashemnia S
    Bioelectrochemistry; 2011 Aug; 82(1):1-9. PubMed ID: 21715233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.
    Park S; Singh A; Kim S; Yang H
    Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film.
    Ibáñez-Redín G; Silva TA; Vicentini FC; Fatibello-Filho O
    Enzyme Microb Technol; 2018 Sep; 116():41-47. PubMed ID: 29887015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.