These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29656338)

  • 41. Efficient light management in vertical nanowire arrays for photovoltaics.
    Anttu N; Xu HQ
    Opt Express; 2013 May; 21 Suppl 3():A558-75. PubMed ID: 24104444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays.
    Qi S; Yi C; Ji S; Fong CC; Yang M
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):30-4. PubMed ID: 20355748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nano-Newton transverse force sensor using a vertical GaN nanowire based on the piezotronic effect.
    Zhou YS; Hinchet R; Yang Y; Ardila G; Songmuang R; Zhang F; Zhang Y; Han W; Pradel K; Montès L; Mouis M; Wang ZL
    Adv Mater; 2013 Feb; 25(6):883-8. PubMed ID: 23161658
    [No Abstract]   [Full Text] [Related]  

  • 44. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling of light into nanowire arrays and subsequent absorption.
    Anttu N; Xu HQ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7183-7. PubMed ID: 21137893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.
    Bergin SM; Chen YH; Rathmell AR; Charbonneau P; Li ZY; Wiley BJ
    Nanoscale; 2012 Mar; 4(6):1996-2004. PubMed ID: 22349106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Field enhancement in microfluidic semiconductor nanowire array.
    Shenoy BM; Hegde G; Roy Mahapatra D
    Biomicrofluidics; 2020 Nov; 14(6):064102. PubMed ID: 33163137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon.
    Matteini F; Dubrovskii VG; Rüffer D; Tütüncüoğlu G; Fontana Y; Morral AF
    Nanotechnology; 2015 Mar; 26(10):105603. PubMed ID: 25687793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Culturing human iPSC-derived neural progenitor cells on nanowire arrays: mapping the impact of nanowire length and array pitch on proliferation, viability, and membrane deformation.
    Harberts J; Bours K; Siegmund M; Hedrich C; Glatza M; Schöler HR; Haferkamp U; Pless O; Zierold R; Blick RH
    Nanoscale; 2021 Dec; 13(47):20052-20066. PubMed ID: 34842880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resonant photo-thermal modification of vertical gallium arsenide nanowires studied using Raman spectroscopy.
    Walia J; Boulanger J; Dhindsa N; LaPierre R; Tang XS; Saini SS
    Nanotechnology; 2016 Jun; 27(24):245708. PubMed ID: 27172276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-density gold nanowire arrays by lithographically patterned nanowire electrodeposition.
    Hujdic JE; Sargisian AP; Shao J; Ye T; Menke EJ
    Nanoscale; 2011 Jul; 3(7):2697-9. PubMed ID: 21399796
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.
    Li Z; Leung C; Gao F; Gu Z
    Sensors (Basel); 2015 Sep; 15(9):22473-89. PubMed ID: 26404303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing.
    Zou W; Quan B; Wang K; Xia L; Yao J; Wei Z
    Small; 2011 Dec; 7(23):3287-91. PubMed ID: 21972036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Eliminating capillary coalescence of nanowire arrays with applied electric fields.
    Hill JJ; Haller K; Gelfand B; Ziegler KJ
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1992-8. PubMed ID: 20662488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces.
    Kwiat M; Elnathan R; Pevzner A; Peretz A; Barak B; Peretz H; Ducobni T; Stein D; Mittelman L; Ashery U; Patolsky F
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3542-9. PubMed ID: 22724437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determining the Time Window for Dynamic Nanowire Cell Penetration Processes.
    Xie X; Aalipour A; Gupta SV; Melosh NA
    ACS Nano; 2015 Dec; 9(12):11667-77. PubMed ID: 26554425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.
    Luan C; Shao Y; Lu Q; Gao S; Huang K; Wu H; Yao K
    ACS Appl Mater Interfaces; 2018 May; 10(21):17950-17956. PubMed ID: 29746098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires.
    Pan ZW; Dai ZR; Ma C; Wang ZL
    J Am Chem Soc; 2002 Feb; 124(8):1817-22. PubMed ID: 11853461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.