These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 29656355)
1. NaCl impact on Kosteletzkya pentacarpos seedlings simultaneously exposed to cadmium and zinc toxicities. Zhou MX; Dailly H; Renard ME; Han RM; Lutts S Environ Sci Pollut Res Int; 2018 Jun; 25(18):17444-17456. PubMed ID: 29656355 [TBL] [Abstract][Full Text] [Related]
2. The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Zhou M; Ghnaya T; Dailly H; Cui G; Vanpee B; Han R; Lutts S Chemosphere; 2019 Oct; 233():954-965. PubMed ID: 31340423 [TBL] [Abstract][Full Text] [Related]
3. Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Zhou M; Han R; Ghnaya T; Lutts S Chemosphere; 2018 Oct; 209():892-900. PubMed ID: 30114738 [TBL] [Abstract][Full Text] [Related]
4. Salinity modifies heavy metals and arsenic absorption by the halophyte plant species Kosteletzkya pentacarpos and pollutant leaching from a polycontaminated substrate. Zhou M; Engelmann T; Lutts S Ecotoxicol Environ Saf; 2019 Oct; 182():109460. PubMed ID: 31349103 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Han RM; Lefèvre I; Albacete A; Pérez-Alfocea F; Barba-Espín G; Díaz-Vivancos P; Quinet M; Ruan CJ; Hernández JA; Cantero-Navarro E; Lutts S Physiol Plant; 2013 Mar; 147(3):352-68. PubMed ID: 22697433 [TBL] [Abstract][Full Text] [Related]
6. Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity. Han R; Quinet M; André E; van Elteren JT; Destrebecq F; Vogel-Mikuš K; Cui G; Debeljak M; Lefèvre I; Lutts S Planta; 2013 Sep; 238(3):441-57. PubMed ID: 23728368 [TBL] [Abstract][Full Text] [Related]
7. NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Wali M; Fourati E; Hmaeid N; Ghabriche R; Poschenrieder C; Abdelly C; Ghnaya T Environ Sci Pollut Res Int; 2015 Jul; 22(14):10769-77. PubMed ID: 25758421 [TBL] [Abstract][Full Text] [Related]
8. Effect of NaCl and EDDS on Heavy Metal Accumulation in Zhou M; Kiamarsi Z; Han R; Kafi M; Lutts S Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111879 [TBL] [Abstract][Full Text] [Related]
9. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis. Wali M; Gunsè B; Llugany M; Corrales I; Abdelly C; Poschenrieder C; Ghnaya T Planta; 2016 Aug; 244(2):333-46. PubMed ID: 27061088 [TBL] [Abstract][Full Text] [Related]
10. Salinity alleviates zinc toxicity in the saltmarsh zinc-accumulator Juncus acutus. Mateos-Naranjo E; Pérez-Romero JA; Redondo-Gómez S; Mesa-Marín J; Castellanos EM; Davy AJ Ecotoxicol Environ Saf; 2018 Nov; 163():478-485. PubMed ID: 30075451 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. He C; Zhao Y; Wang F; Oh K; Zhao Z; Wu C; Zhang X; Chen X; Liu X Chemosphere; 2020 Aug; 252():126471. PubMed ID: 32220713 [TBL] [Abstract][Full Text] [Related]
12. How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Mariem W; Kilani BR; Benet G; Abdelbasset L; Stanley L; Charlotte P; Chedly A; Tahar G Chemosphere; 2014 Dec; 117():243-50. PubMed ID: 25104648 [TBL] [Abstract][Full Text] [Related]
13. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages. Huang F; Wen XH; Cai YX; Cai KZ Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30297625 [TBL] [Abstract][Full Text] [Related]
14. The response of a model C Nosek M; Kaczmarczyk A; Śliwa M; Jędrzejczyk R; Kornaś A; Supel P; Kaszycki P; Miszalski Z J Plant Physiol; 2019 Sep; 240():153005. PubMed ID: 31271976 [TBL] [Abstract][Full Text] [Related]
15. Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. Ibrahim W; Ahmed IM; Chen X; Cao F; Zhu S; Wu F Biometals; 2015 Dec; 28(6):1063-78. PubMed ID: 26525977 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Tang L; Yao A; Ming Yuan ; Tang Y; Liu J; Liu X; Qiu R Chemosphere; 2016 Dec; 164():190-200. PubMed ID: 27591370 [TBL] [Abstract][Full Text] [Related]
17. Zhou M; Lutts S; Han R Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834857 [No Abstract] [Full Text] [Related]
18. Kochia scoparia L., a newfound candidate halophyte, for phytoremediation of cadmium-contaminated saline soils. Shi R; Liang L; Liu W; Zeb A Environ Sci Pollut Res Int; 2022 Jun; 29(29):44759-44768. PubMed ID: 35138541 [TBL] [Abstract][Full Text] [Related]
19. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. Tkalec M; Stefanić PP; Cvjetko P; Sikić S; Pavlica M; Balen B PLoS One; 2014; 9(1):e87582. PubMed ID: 24475312 [TBL] [Abstract][Full Text] [Related]
20. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]