These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29656368)

  • 1. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III.
    Liu R; Wu H; Lv L; Kang X; Cui C; Feng J; Guo Z
    Mikrochim Acta; 2018 Apr; 185(5):254. PubMed ID: 29656368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification.
    Wu H; Liu R; Kang X; Liang C; Lv L; Guo Z
    Mikrochim Acta; 2017 Dec; 185(1):27. PubMed ID: 29594393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer.
    Zhao H; Xiang X; Chen M; Ma C
    Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification.
    Liu M; Li X; Li B; Du J; Yang Z
    Mikrochim Acta; 2019 Dec; 187(1):46. PubMed ID: 31838593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation.
    Wang C; Tan R; Li J; Zhang Z
    Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe.
    Wu K; Ma C; Zhao H; He H; Chen H
    Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA).
    Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W
    Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A.
    Li Y; Zhang N; Wang H; Zhao Q
    J Agric Food Chem; 2020 Apr; 68(14):4277-4283. PubMed ID: 32182058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification.
    Ma C; Wu K; Zhao H; Liu H; Wang K; Xia K
    Mikrochim Acta; 2018 Jun; 185(7):347. PubMed ID: 29961128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJ
    Zhao H; Xiong D; Yan Y; Ma C
    Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33113906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic "Turn-On" Aptasensor Detection of Ochratoxin A Using Energy-Transfer Fluorescence.
    Armstrong-Price DE; Deore PS; Manderville RA
    J Agric Food Chem; 2020 Feb; 68(7):2249-2255. PubMed ID: 31986034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional MoS
    Tang J; Huang Y; Cheng Y; Huang L; Zhuang J; Tang D
    Mikrochim Acta; 2018 Feb; 185(3):162. PubMed ID: 29594615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling.
    Tong P; Zhang L; Xu JJ; Chen HY
    Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A.
    Han B; Fang C; Sha L; Jalalah M; Al-Assiri MS; Harraz FA; Cao Y
    Food Chem; 2021 Feb; 338():127827. PubMed ID: 32822900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.
    Wei Y; Zhang J; Wang X; Duan Y
    Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification.
    Song C; Hong W; Zhang X; Lu Y
    Analyst; 2018 Apr; 143(8):1829-1834. PubMed ID: 29594306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of trace Aflatoxin B
    Xiao MW; Bai XL; Liu YM; Yang L; Liao X
    J Chromatogr A; 2018 Sep; 1569():222-228. PubMed ID: 30037541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer.
    Lv L; Jin Y; Kang X; Zhao Y; Cui C; Guo Z
    Food Chem; 2018 May; 249():45-50. PubMed ID: 29407930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod.
    Yu X; Lin Y; Wang X; Xu L; Wang Z; Fu F
    Mikrochim Acta; 2018 Apr; 185(5):259. PubMed ID: 29680954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A label-free aptasensor for turn-on fluorescent detection of ochratoxin A based on aggregation-induced emission probe.
    Lv L; Cui C; Xie W; Sun W; Ji S; Tian J; Guo Z
    Methods Appl Fluoresc; 2019 Nov; 8(1):015003. PubMed ID: 31622960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.