These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29656392)
1. Epigenetic modifications preserve the hyperaccumulator Noccaea caerulescens from Ni geno-toxicity. Gullì M; Marchi L; Fragni R; Buschini A; Visioli G Environ Mol Mutagen; 2018 Jul; 59(6):464-475. PubMed ID: 29656392 [TBL] [Abstract][Full Text] [Related]
2. DNA methylation is enhanced during Cd hyperaccumulation in Noccaea caerulescens ecotype Ganges. Galati S; DalCorso G; Furini A; Fragni R; Maccari C; Mozzoni P; Giannelli G; Buschini A; Visioli G Environ Sci Pollut Res Int; 2023 Feb; 30(10):26178-26190. PubMed ID: 36352075 [TBL] [Abstract][Full Text] [Related]
3. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils. Mandáková T; Singh V; Krämer U; Lysak MA Plant Physiol; 2015 Sep; 169(1):674-89. PubMed ID: 26195571 [TBL] [Abstract][Full Text] [Related]
4. Differences in mineral accumulation and gene expression profiles between two metal hyperaccumulators, Enomoto T; Yoshida J; Mizuno T; Watanabe T; Nishida S Plant Signal Behav; 2021 Oct; 16(10):1945212. PubMed ID: 34227899 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of ZNT1 and NRAMP4 from the Ni Hyperaccumulator Fasani E; DalCorso G; Zorzi G; Agrimonti C; Fragni R; Visioli G; Furini A Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769323 [TBL] [Abstract][Full Text] [Related]
6. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Visioli G; Vamerali T; Mattarozzi M; Dramis L; Sanangelantoni AM Front Plant Sci; 2015; 6():638. PubMed ID: 26322074 [TBL] [Abstract][Full Text] [Related]
7. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775 [TBL] [Abstract][Full Text] [Related]
8. ESEM-EDS: In vivo characterization of the Ni hyperaccumulator Noccaea caerulescens. Mattarozzi M; Visioli G; Sanangelantoni AM; Careri M Micron; 2015 Aug; 75():18-26. PubMed ID: 25984895 [TBL] [Abstract][Full Text] [Related]
9. Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Visioli G; D'Egidio S; Vamerali T; Mattarozzi M; Sanangelantoni AM Chemosphere; 2014 Dec; 117():538-44. PubMed ID: 25277966 [TBL] [Abstract][Full Text] [Related]
10. Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL). Plessl M; Rigola D; Hassinen V; Aarts MG; Schat H Z Naturforsch C J Biosci; 2005; 60(3-4):216-23. PubMed ID: 15948586 [TBL] [Abstract][Full Text] [Related]
11. Quantification of nickel and cobalt mobility and accumulation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Deng TH; Chen JQ; Geng KR; van der Ent A; Tang YT; Wen D; Wang X; Li L; Du RY; Morel JL; Qiu RL Metallomics; 2021 Apr; 13(4):. PubMed ID: 33765153 [TBL] [Abstract][Full Text] [Related]
12. A bisphosphonate increasing the shoot biomass of the metal hyperaccumulator Noccaea caerulescens. Alanne AL; Peräniemi S; Turhanen P; Tuomainen M; Vepsäläinen J; Tervahauta A Chemosphere; 2014 Jan; 95():566-71. PubMed ID: 24182405 [TBL] [Abstract][Full Text] [Related]
13. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120 [TBL] [Abstract][Full Text] [Related]
14. Elevated Expression of Vacuolar Nickel Transporter Gene Nishida S; Tanikawa R; Ishida S; Yoshida J; Mizuno T; Nakanishi H; Furuta N Front Plant Sci; 2020; 11():610. PubMed ID: 32582232 [TBL] [Abstract][Full Text] [Related]
15. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753 [TBL] [Abstract][Full Text] [Related]
16. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671 [TBL] [Abstract][Full Text] [Related]
17. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Verweij R; Schat H Plant Signal Behav; 2014; 9(9):e29580. PubMed ID: 25763695 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Chardot V; Massoura ST; Echevarria G; Reeves RD; Morel JL Int J Phytoremediation; 2005; 7(4):323-35. PubMed ID: 16463544 [TBL] [Abstract][Full Text] [Related]
19. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. do Nascimento CWA; Hesterberg D; Tappero R J Hazard Mater; 2021 Apr; 408():124813. PubMed ID: 33385722 [TBL] [Abstract][Full Text] [Related]
20. The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. Ważny R; Rozpądek P; Domka A; Jędrzejczyk RJ; Nosek M; Hubalewska-Mazgaj M; Lichtscheidl I; Kidd P; Turnau K Sci Total Environ; 2021 May; 768():144666. PubMed ID: 33736318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]