These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 29656603)
1. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed. Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603 [TBL] [Abstract][Full Text] [Related]
2. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model. Watanabe H; Takagi K; Vu SH Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540 [TBL] [Abstract][Full Text] [Related]
3. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model. Phong TK; Hiramatsu K; Watanabe H Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270 [TBL] [Abstract][Full Text] [Related]
4. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738 [TBL] [Abstract][Full Text] [Related]
5. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model. Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777 [TBL] [Abstract][Full Text] [Related]
6. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies. Karpouzas DG; Ferrero A; Vidotto F; Capri E Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578 [TBL] [Abstract][Full Text] [Related]
7. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field. Boulange J; Malhat F; Thuyet DQ; Watanabe H Pest Manag Sci; 2017 Dec; 73(12):2429-2438. PubMed ID: 28580617 [TBL] [Abstract][Full Text] [Related]
8. Simulating the fate and transport of nursery-box-applied pesticide in rice paddy fields. Boulange J; Thuyet DQ; Jaikaew P; Watanabe H Pest Manag Sci; 2016 Jun; 72(6):1178-86. PubMed ID: 26271744 [TBL] [Abstract][Full Text] [Related]
9. [Simultaneous determination of bensulfuron-methyl and mefenacet residues in paddy field using high performance liquid chromatography]. Yang L; Gong D; Tang J; Luo J; Ding C Se Pu; 2012 Jan; 30(1):71-5. PubMed ID: 22667095 [TBL] [Abstract][Full Text] [Related]
10. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M; Heathman GC; Norton LD; Engel B J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256 [TBL] [Abstract][Full Text] [Related]
11. Estimation of pesticide runoff from paddy fields to rural rivers. Numabe A; Nagahora S Water Sci Technol; 2006; 53(2):139-46. PubMed ID: 16594332 [TBL] [Abstract][Full Text] [Related]
12. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring. Vu SH; Ishihara S; Watanabe H Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930 [TBL] [Abstract][Full Text] [Related]
13. Predicting herbicides concentrations in paddy water and runoff to the river basin. Parveen S; Kohguchi T; Biswas M; Nakagoshi N J Environ Sci (China); 2005; 17(4):631-6. PubMed ID: 16158594 [TBL] [Abstract][Full Text] [Related]
14. Inverse modeling of laboratory experiment to assess parameter transferability of pesticide environmental fate into outdoor experiments under paddy test systems. Kondo K; Wakasone Y; Iijima K; Ohyama K Pest Manag Sci; 2020 Aug; 76(8):2768-2780. PubMed ID: 32202059 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a simulation method, PeCHREM, for evaluating spatio-temporal concentration changes of paddy herbicides in rivers. Imaizumi Y; Suzuki N; Shiraishi F; Nakajima D; Serizawa S; Sakurai T; Shiraishi H Environ Sci Process Impacts; 2018 Jan; 20(1):120-132. PubMed ID: 29328337 [TBL] [Abstract][Full Text] [Related]
16. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed. Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630 [TBL] [Abstract][Full Text] [Related]
17. Investigation of concentrations of paddy herbicides and their transformation products in the Sakura River, Japan, and toxicity of the compounds to a diatom and a green alga. Iwafune T; Ara T; Ishihara S; Yokoyama A; Nagai T; Horio T Bull Environ Contam Toxicol; 2012 Jan; 88(1):38-42. PubMed ID: 21996720 [TBL] [Abstract][Full Text] [Related]
18. Calibration and validation of a dynamic water model in agricultural scenarios. Infantino A; Pereira T; Ferrari C; Cerejeira MJ; Di Guardo A Chemosphere; 2008 Jan; 70(7):1298-308. PubMed ID: 17765289 [TBL] [Abstract][Full Text] [Related]
19. Effect of rice husk gasification residue application on herbicide behavior in micro paddy lysimeter. Ok J; Pisith S; Watanabe H; Thuyet DQ; Boulange J; Takagi K Bull Environ Contam Toxicol; 2015 Jun; 94(6):791-5. PubMed ID: 25763539 [TBL] [Abstract][Full Text] [Related]
20. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor. Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]