BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 29656897)

  • 1. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.
    Christiansen EM; Yang SJ; Ando DM; Javaherian A; Skibinski G; Lipnick S; Mount E; O'Neil A; Shah K; Lee AK; Goyal P; Fedus W; Poplin R; Esteva A; Berndl M; Rubin LL; Nelson P; Finkbeiner S
    Cell; 2018 Apr; 173(3):792-803.e19. PubMed ID: 29656897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy.
    Ounkomol C; Seshamani S; Maleckar MM; Collman F; Johnson GR
    Nat Methods; 2018 Nov; 15(11):917-920. PubMed ID: 30224672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence microscopy datasets for training deep neural networks.
    Hagen GM; Bendesky J; Machado R; Nguyen TA; Kumar T; Ventura J
    Gigascience; 2021 May; 10(5):. PubMed ID: 33954794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images.
    Wu AC; Rifkin SA
    BMC Bioinformatics; 2015 Mar; 16():102. PubMed ID: 25880543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed Spectral Imaging of 120 Different Fluorescent Labels.
    Valm AM; Oldenbourg R; Borisy GG
    PLoS One; 2016; 11(7):e0158495. PubMed ID: 27391327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HCS Methodology for Helping in Lab Scale Image-Based Assays.
    Soriano J; Mata G; Megias D
    Methods Mol Biol; 2019; 2040():331-356. PubMed ID: 31432486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphologically constrained spectral unmixing by dictionary learning for multiplex fluorescence microscopy.
    Megjhani M; Correa de Sampaio P; Leigh Carstens J; Kalluri R; Roysam B
    Bioinformatics; 2017 Jul; 33(14):2182-2190. PubMed ID: 28334208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Advanced Live-Cell Imaging through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies.
    Bénard M; Schapman D; Chamot C; Dubois F; Levallet G; Komuro H; Galas L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chemical probe that labels human pluripotent stem cells.
    Hirata N; Nakagawa M; Fujibayashi Y; Yamauchi K; Murata A; Minami I; Tomioka M; Kondo T; Kuo TF; Endo H; Inoue H; Sato SI; Ando S; Kawazoe Y; Aiba K; Nagata K; Kawase E; Chang YT; Suemori H; Eto K; Nakauchi H; Yamanaka S; Nakatsuji N; Ueda K; Uesugi M
    Cell Rep; 2014 Mar; 6(6):1165-1174. PubMed ID: 24613351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Content-aware image restoration: pushing the limits of fluorescence microscopy.
    Weigert M; Schmidt U; Boothe T; Müller A; Dibrov A; Jain A; Wilhelm B; Schmidt D; Broaddus C; Culley S; Rocha-Martins M; Segovia-Miranda F; Norden C; Henriques R; Zerial M; Solimena M; Rink J; Tomancak P; Royer L; Jug F; Myers EW
    Nat Methods; 2018 Dec; 15(12):1090-1097. PubMed ID: 30478326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid analysis and exploration of fluorescence microscopy images.
    Pavie B; Rajaram S; Ouyang A; Altschuler JM; Steininger RJ; Wu LF; Altschuler SJ
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24686220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation.
    Waisman A; La Greca A; Möbbs AM; Scarafía MA; Santín Velazque NL; Neiman G; Moro LN; Luzzani C; Sevlever GE; Guberman AS; Miriuka SG
    Stem Cell Reports; 2019 Apr; 12(4):845-859. PubMed ID: 30880077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of single fluorescent labels using spectroscopic microscopy.
    Heider EC; Barhoum M; Peterson EM; Schaefer J; Harris JM
    Appl Spectrosc; 2010 Jan; 64(1):37-45. PubMed ID: 20132596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Workflow for high-content, individual cell quantification of fluorescent markers from universal microscope data, supported by open source software.
    Stockwell SR; Mittnacht S
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and computer vision approaches for phenotypic profiling.
    Grys BT; Lo DS; Sahin N; Kraus OZ; Morris Q; Boone C; Andrews BJ
    J Cell Biol; 2017 Jan; 216(1):65-71. PubMed ID: 27940887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpotitPy: a semi-automated tool for object-based co-localization of fluorescent labels in microscopy images.
    Akalestou-Clocher A; Kalamara V; Topalis P; Garinis GA
    BMC Bioinformatics; 2022 Oct; 23(1):439. PubMed ID: 36271369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution for a 3D world.
    Shaevitz JW
    Nat Methods; 2008 Jun; 5(6):471-2. PubMed ID: 18511914
    [No Abstract]   [Full Text] [Related]  

  • 20. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.