These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29657346)

  • 21. Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar.
    De la Rosa JM; Miller AZ; Knicker H
    Sci Rep; 2018 Feb; 8(1):2896. PubMed ID: 29440718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes.
    Berry TD; Filley TR; Blanchette RA
    Environ Pollut; 2014 Oct; 193():197-204. PubMed ID: 25047356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13.
    Teerapatsakul C; Pothiratana C; Chitradon L; Thachepan S
    J Gen Appl Microbiol; 2017 Jan; 62(6):303-312. PubMed ID: 27885193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dual-isotope approach to allow conclusive partitioning between three sources.
    Whitman T; Lehmann J
    Nat Commun; 2015 Nov; 6():8708. PubMed ID: 26530521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.
    Wu Y; Jiang Y; Jiao J; Liu M; Hu F; Griffiths BS; Li H
    Colloids Surf B Biointerfaces; 2014 Feb; 114():342-8. PubMed ID: 24225344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi.
    Walter M; Boul L; Chong R; Ford C
    J Environ Manage; 2004 Jul; 71(4):361-9. PubMed ID: 15217724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increase of laccase activity during interspecific interactions of white-rot fungi.
    Baldrian P
    FEMS Microbiol Ecol; 2004 Nov; 50(3):245-53. PubMed ID: 19712364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils.
    Gallo M; Amonette R; Lauber C; Sinsabaugh RL; Zak DR
    Microb Ecol; 2004 Aug; 48(2):218-29. PubMed ID: 15546042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories.
    Chen R; Senbayram M; Blagodatsky S; Myachina O; Dittert K; Lin X; Blagodatskaya E; Kuzyakov Y
    Glob Chang Biol; 2014 Jul; 20(7):2356-67. PubMed ID: 24273056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.
    Markewitz D; Davidson EA; Figueiredo Rd ; Victoria RL; Krusche AV
    Nature; 2001 Apr; 410(6830):802-5. PubMed ID: 11298445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste.
    Voběrková S; Vaverková MD; Burešová A; Adamcová D; Vršanská M; Kynický J; Brtnický M; Adam V
    Waste Manag; 2017 Mar; 61():157-164. PubMed ID: 28065548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feedback interactions between needle litter decomposition and rhizosphere activity.
    Subke JA; Hahn V; Battipaglia G; Linder S; Buchmann N; Cotrufo MF
    Oecologia; 2004 May; 139(4):551-9. PubMed ID: 15042460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor.
    Hiscox J; Baldrian P; Rogers HJ; Boddy L
    Fungal Genet Biol; 2010 Jun; 47(6):562-71. PubMed ID: 20371297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isotopic evidence for condensed aromatics from non-pyrogenic sources in soils--implications for current methods for quantifying soil black carbon.
    Glaser B; Knorr KH
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):935-42. PubMed ID: 18306211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.
    Wagai R; Kishimoto-Mo AW; Yonemura S; Shirato Y; Hiradate S; Yagasaki Y
    Glob Chang Biol; 2013 Apr; 19(4):1114-25. PubMed ID: 23504889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant-driven weathering of apatite--the role of an ectomycorrhizal fungus.
    Smits MM; Bonneville S; Benning LG; Banwart SA; Leake JR
    Geobiology; 2012 Sep; 10(5):445-56. PubMed ID: 22624799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influences of phosphate addition on fungal weathering of carbonate in the red soil from karst region.
    Tian D; Su M; Zou X; Zhang L; Tang L; Geng Y; Qiu J; Wang S; Gao H; Li Z
    Sci Total Environ; 2021 Feb; 755(Pt 2):142570. PubMed ID: 33035850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Flow Adsorption Microcalorimetry-Logistic Modeling Approach for Assessing Heterogeneity of Brønsted-Type Surfaces: Application to Pyrogenic Organic Materials.
    Harvey OR; Leonce BC; Herbert BE
    Environ Sci Technol; 2018 Jun; 52(11):6167-6176. PubMed ID: 29719148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the bioremediation of phenolic wastewaters by Trametes versicolor.
    Ryan D; Leukes W; Burton S
    Bioresour Technol; 2007 Feb; 98(3):579-87. PubMed ID: 16545562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.