These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29657655)

  • 1. Detection of viability of micro-algae cells by optofluidic hologram pattern.
    Wang J; Yu X; Wang Y; Pan X; Li D
    Biomicrofluidics; 2018 Mar; 12(2):024111. PubMed ID: 29657655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing.
    Wang J; Zhao J; Wang Y; Wang W; Gao Y; Xu R; Zhao W
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic detection and separation of living algae in a microfluidic chip: implication for ship's ballast water analysis.
    Song Y; Li Z; Feng A; Zhang J; Liu Z; Li D
    Environ Sci Pollut Res Int; 2021 May; 28(18):22853-22863. PubMed ID: 33428091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic lab-on-a-chip for rapid algae population screening.
    Schaap A; Bellouard Y; Rohrlack T
    Biomed Opt Express; 2011 Feb; 2(3):658-64. PubMed ID: 21412470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water.
    Maw MM; Wang J; Li F; Jiang J; Song Y; Pan X
    Int J Mol Sci; 2015 Oct; 16(10):25560-75. PubMed ID: 26516836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence.
    Wang J; Sun J; Song Y; Xu Y; Pan X; Sun Y; Li D
    Sensors (Basel); 2013 Nov; 13(12):16075-89. PubMed ID: 24287532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging.
    Wang Y; Wang J; Wang T; Wang C
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector.
    Bianco V; Paturzo M; Marchesano V; Gallotta I; Di Schiavi E; Ferraro P
    Lab Chip; 2015 May; 15(9):2117-24. PubMed ID: 25832808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic motion and viability assessment of algae with a polyethylene glycol-dextran interface.
    Xu R; Zhang J; Cao Z; Song Y; Xin X
    Electrophoresis; 2023 Dec; 44(23):1818-1825. PubMed ID: 37438992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Precision Lens-Less Flow Cytometer on a Chip.
    Fang Y; Yu N; Jiang Y; Dang C
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring.
    Saitta L; Cutuli E; Celano G; Tosto C; Sanalitro D; Guarino F; Cicala G; Bucolo M
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lensfree optofluidic microscopy and tomography.
    Bishara W; Isikman SO; Ozcan A
    Ann Biomed Eng; 2012 Feb; 40(2):251-62. PubMed ID: 21887590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy.
    Shin D; Daneshpanah M; Anand A; Javidi B
    Opt Lett; 2010 Dec; 35(23):4066-8. PubMed ID: 21124614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lensfree holographic imaging for on-chip cytometry and diagnostics.
    Seo S; Su TW; Tseng DK; Erlinger A; Ozcan A
    Lab Chip; 2009 Mar; 9(6):777-87. PubMed ID: 19255659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time 3D imaging of ocean algae with crosstalk suppressed single-shot digital holographic microscopy.
    Tang M; He H; Yu L
    Biomed Opt Express; 2022 Aug; 13(8):4455-4467. PubMed ID: 36032587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.
    Yuan T; Yang X; Liu Z; Yang J; Li S; Kong D; Qi X; Yu W; Long Q; Yuan L
    Opt Express; 2017 Jul; 25(15):18205-18215. PubMed ID: 28789310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed micro-optofluidic device for chemical fluids and cells detection.
    Cairone F; Davi S; Stella G; Guarino F; Recca G; Cicala G; Bucolo M
    Biomed Microdevices; 2020 May; 22(2):37. PubMed ID: 32419044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.
    Persichetti G; Grimaldi IA; Testa G; Bernini R
    Lab Chip; 2017 Jul; 17(15):2631-2639. PubMed ID: 28664956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.