These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29657807)

  • 1. Trophic specialization drives morphological evolution in sea snakes.
    Sherratt E; Rasmussen AR; Sanders KL
    R Soc Open Sci; 2018 Mar; 5(3):172141. PubMed ID: 29657807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochronic Shifts Mediate Ecomorphological Convergence in Skull Shape of Microcephalic Sea Snakes.
    Sherratt E; Sanders KL; Watson A; Hutchinson MN; Lee MSY; Palci A
    Integr Comp Biol; 2019 Sep; 59(3):616-624. PubMed ID: 31065670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertebral evolution and ontogenetic allometry: The developmental basis of extreme body shape divergence in microcephalic sea snakes.
    Sherratt E; Coutts FJ; Rasmussen AR; Sanders KL
    Evol Dev; 2019 May; 21(3):135-144. PubMed ID: 30791197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroevolution in axial morphospace: innovations accompanying the transition to marine environments in elapid snakes.
    Sherratt E; Nash-Hahn T; Nankivell JH; Rasmussen AR; Hampton PM; Sanders KL
    R Soc Open Sci; 2022 Dec; 9(12):221087. PubMed ID: 36569233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent rapid speciation and ecomorph divergence in Indo-Australian sea snakes.
    Sanders KL; Rasmussen AR; Mumpuni ; Elmberg J; de Silva A; Guinea ML; Lee MS
    Mol Ecol; 2013 May; 22(10):2742-59. PubMed ID: 23506038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of intracolumnar size variation inform the heterochronic mechanisms underlying extreme body shape divergence in microcephalic sea snakes.
    Sherratt E; Sanders KL
    Evol Dev; 2020 May; 22(3):283-290. PubMed ID: 31730744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diet and habit explain head-shape convergences in natricine snakes.
    Deepak V; Gower DJ; Cooper N
    J Evol Biol; 2023 Feb; 36(2):399-411. PubMed ID: 36511814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid increase in snake dietary diversity and complexity following the end-Cretaceous mass extinction.
    Grundler MC; Rabosky DL
    PLoS Biol; 2021 Oct; 19(10):e3001414. PubMed ID: 34648487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diets of Hispaniolan colubrid snakes : I. Introduction and prey genera.
    Henderson RW
    Oecologia; 1984 May; 62(2):234-239. PubMed ID: 28310719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foraging mode, relative prey size and diet breadth: A phylogenetically explicit analysis of snake feeding ecology.
    Glaudas X; Glennon KL; Martins M; Luiselli L; Fearn S; Trembath DF; Jelić D; Alexander GJ
    J Anim Ecol; 2019 May; 88(5):757-767. PubMed ID: 30828806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes.
    Pahari S; Bickford D; Fry BG; Kini RM
    BMC Evol Biol; 2007 Sep; 7():175. PubMed ID: 17900344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.
    Keogh JS; Scott IA; Hayes C
    Evolution; 2005 Jan; 59(1):226-33. PubMed ID: 15792242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burrowing constrains patterns of skull shape evolution in wrasses.
    Evans KM; Larouche O; West JL; Gartner SM; Westneat MW
    Evol Dev; 2023 Jan; 25(1):73-84. PubMed ID: 35971630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When Food Fights Back: Skull Morphology and Feeding Behavior of Centipede-Eating Snakes.
    Gripshover ND; Hennessey P; McBrayer LD; Meik JM; Watson CM; Cox CL
    Integr Comp Biol; 2023 Jul; 63(1):34-47. PubMed ID: 37248050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What makes a fang? Phylogenetic and ecological controls on tooth evolution in rear-fanged snakes.
    Westeen EP; Durso AM; Grundler MC; Rabosky DL; Davis Rabosky AR
    BMC Evol Biol; 2020 Jul; 20(1):80. PubMed ID: 32646372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swim with the tide: Tactics to maximize prey detection by a specialist predator, the greater sea snake (Hydrophis major).
    Udyawer V; Goiran C; Chateau O; Shine R
    PLoS One; 2020; 15(10):e0239920. PubMed ID: 33002087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence in trophic morphology and feeding performance among piscivorous natricine snakes.
    Vincent SE; Brandley MC; Herrel A; Alfaro ME
    J Evol Biol; 2009 Jun; 22(6):1203-11. PubMed ID: 19389153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of population differentiation and speciation are decoupled in sea snakes.
    Nitschke CR; Hourston M; Udyawer V; Sanders KL
    Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30333264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology, Diet, and Reproduction of Coastal
    Fujishima K; Sasai T; Hibino Y; Nishizawa H
    Zoolog Sci; 2021 Oct; 38(5):405-415. PubMed ID: 34664915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transitional snake from the Late Cretaceous period of North America.
    Longrich NR; Bhullar BA; Gauthier JA
    Nature; 2012 Aug; 488(7410):205-8. PubMed ID: 22832579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.