These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29658273)

  • 21. Fulvic acid oxidation state detection using fluorescence spectroscopy.
    Klapper L; McKnight DM; Fulton JR; Blunt-Harris EL; Nevin KP; Lovley DR; Hatcher PG
    Environ Sci Technol; 2002 Jul; 36(14):3170-5. PubMed ID: 12141500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals.
    Han R; Wang Z; Lv J; Zhu Z; Yu GH; Li G; Zhu YG
    Environ Sci Technol; 2022 Nov; 56(22):16419-16427. PubMed ID: 36223591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Influences of humic acids on the dissimilatory iron reduction of red soil in anaerobic condition].
    Xu LN; Li ZP; Che YP
    Huan Jing Ke Xue; 2009 Jan; 30(1):221-6. PubMed ID: 19353884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of TOC Concentration of Humic Substances as an Electron Shuttle on Redox Functional Groups Stimulating Microbial Cr(VI) Reduction.
    Zhou Y; Duan J; Jiang J; Yang Z
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.
    Nevin KP; Lovley DR
    Appl Environ Microbiol; 2002 May; 68(5):2294-9. PubMed ID: 11976100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.
    Coates JD; Cole KA; Chakraborty R; O'Connor SM; Achenbach LA
    Appl Environ Microbiol; 2002 May; 68(5):2445-52. PubMed ID: 11976120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular electron transfer in fermentative bacterium Anoxybacter fermentans DY22613
    Li X; Zeng X; Qiu D; Zhang Z; Zhang X; Shao Z
    Sci Total Environ; 2020 Jun; 722():137723. PubMed ID: 32208240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular Electron Transfer May Be an Overlooked Contribution to Pelagic Respiration in Humic-Rich Freshwater Lakes.
    He S; Lau MP; Linz AM; Roden EE; McMahon KD
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30674644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution.
    Xie L; Shang C; Zhou Q
    J Environ Sci (China); 2008; 20(3):257-61. PubMed ID: 18595389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6.
    Gerlach R; Field EK; Viamajala S; Peyton BM; Apel WA; Cunningham AB
    Biodegradation; 2011 Sep; 22(5):983-95. PubMed ID: 21318474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2.
    Bhushan B; Halasz A; Hawari J
    J Appl Microbiol; 2006 Mar; 100(3):555-63. PubMed ID: 16478495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.
    Zhou S; Chen S; Yuan Y; Lu Q
    Sci Rep; 2015 Nov; 5():17067. PubMed ID: 26593782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction.
    Kulkarni HV; Mladenov N; McKnight DM; Zheng Y; Kirk MF; Nemergut DR
    Sci Total Environ; 2018 Feb; 615():1390-1395. PubMed ID: 29751443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential application of electron donors and humic acids for the anaerobic bioremediation of chlorinated aliphatic hydrocarbons.
    Scherr KE; Nahold MM; Lantschbauer W; Loibner AP
    N Biotechnol; 2011 Dec; 29(1):116-25. PubMed ID: 21600322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement.
    Wu Y; Wang C; Wang S; An J; Liang D; Zhao Q; Tian L; Wu Y; Wang X; Li N
    Water Res; 2021 Feb; 189():116663. PubMed ID: 33307376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insoluble Fe-humic acid complex as a solid-phase electron mediator for microbial reductive dechlorination.
    Zhang C; Zhang D; Li Z; Akatsuka T; Yang S; Suzuki D; Katayama A
    Environ Sci Technol; 2014 Jun; 48(11):6318-25. PubMed ID: 24758743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32.
    Lu Y; Hu S; Zhang H; Song Q; Zhou W; Shen X; Xia D; Yang Y; Zhu H; Liu C
    Sci Total Environ; 2022 Nov; 849():157713. PubMed ID: 35914600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.