These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29658273)

  • 41. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material.
    Kwon MJ; Finneran KT
    Biodegradation; 2010 Nov; 21(6):923-37. PubMed ID: 20424887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of persulfate by humic substances: Stoichiometry and changes in the optical properties of the humic substances.
    Kim C; Chin YP; Son H; Hwang I
    Water Res; 2022 Apr; 212():118107. PubMed ID: 35085845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01.
    Wang Y; Wu C; Wang X; Zhou S
    J Hazard Mater; 2009 May; 164(2-3):941-7. PubMed ID: 18849114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization and quantification of reversible redox sites in humic substances.
    Ratasuk N; Nanny MA
    Environ Sci Technol; 2007 Nov; 41(22):7844-50. PubMed ID: 18075097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors.
    Cervantes FJ; Mancilla AR; Ríos-del Toro EE; Alpuche-Solís AG; Montoya-Lorenzana L
    J Hazard Mater; 2011 Nov; 195():201-7. PubMed ID: 21880424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.
    Zhang D; Zhang C; Xiao Z; Suzuki D; Katayama A
    J Biosci Bioeng; 2015 Feb; 119(2):188-94. PubMed ID: 25176636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Response of humic-reducing microorganisms to the redox properties of humic substance during composting.
    Zhao X; He X; Xi B; Gao R; Tan W; Zhang H; Huang C; Li D; Li M
    Waste Manag; 2017 Dec; 70():37-44. PubMed ID: 28927850
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of humic acid and ouinone model compounds in bromate reduction by zerovalent iron.
    Xie L; Shang C
    Environ Sci Technol; 2005 Feb; 39(4):1092-100. PubMed ID: 15773482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.
    Hobbie SN; Li X; Basen M; Stingl U; Brune A
    Syst Appl Microbiol; 2012 Jun; 35(4):226-32. PubMed ID: 22525666
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased Electron-Accepting and Decreased Electron-Donating Capacities of Soil Humic Substances in Response to Increasing Temperature.
    Tan W; Xi B; Wang G; Jiang J; He X; Mao X; Gao R; Huang C; Zhang H; Li D; Jia Y; Yuan Y; Zhao X
    Environ Sci Technol; 2017 Mar; 51(6):3176-3186. PubMed ID: 28212017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding of atrazine to humic substances from soil, peat and coal related to their structure.
    Kulikova NA; Perminova IV
    Environ Sci Technol; 2002 Sep; 36(17):3720-4. PubMed ID: 12322743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Subsurface interactions of Fe(II) with humic acid or landfill leachate do not control subsequent iron(III) (hydr)oxide production at the surface.
    Jackson A; Gaffney JW; Boult S
    Environ Sci Technol; 2012 Jul; 46(14):7543-50. PubMed ID: 22712619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5.
    Wu CY; Zhuang L; Zhou SG; Yuan Y; Yuan T; Li FB
    Microb Biotechnol; 2013 Mar; 6(2):141-9. PubMed ID: 23217085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Electron shuttling function of dissolved organic matter].
    Xu W; Hu P; Zhou SG; Li XM; Li YH
    Huan Jing Ke Xue; 2009 Aug; 30(8):2297-301. PubMed ID: 19799291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Humin as an electron mediator for microbial reductive dehalogenation.
    Zhang C; Katayama A
    Environ Sci Technol; 2012 Jun; 46(12):6575-83. PubMed ID: 22582856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reducing capacities in continuously released low molecular weight fractions from bulk humic acids.
    Cao J; Jiang J
    J Environ Manage; 2019 Aug; 244():172-179. PubMed ID: 31121504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arsenic mobilization affected by extracellular polymeric substances (EPS) of the dissimilatory iron reducing bacteria isolated from high arsenic groundwater.
    Liu H; Li P; Wang H; Qing C; Tan T; Shi B; Zhang G; Jiang Z; Wang Y; Hasan SZ
    Sci Total Environ; 2020 Sep; 735():139501. PubMed ID: 32498015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.