These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 29658515)
21. Evaluation of Changes in Human Corneas After Femtosecond Laser-Assisted LASIK and Small-Incision Lenticule Extraction (SMILE) Using Non-Contact Tonometry and Ultra-High-Speed Camera (Corvis ST). Sefat SM; Wiltfang R; Bechmann M; Mayer WJ; Kampik A; Kook D Curr Eye Res; 2016 Jul; 41(7):917-22. PubMed ID: 26554611 [TBL] [Abstract][Full Text] [Related]
22. Role of Age and Myopia in Simultaneous Assessment of Corneal and Extraocular Tissue Stiffness by Air-Puff Applanation. Matalia J; Francis M; Tejwani S; Dudeja G; Rajappa N; Sinha Roy A J Refract Surg; 2016 Jul; 32(7):486-93. PubMed ID: 27400081 [TBL] [Abstract][Full Text] [Related]
23. In-vivo high-speed biomechanical imaging of the cornea using Corvis ST and digital image correlation. Wang B; Yang L; Cheng J; Wang J; Mei Y Comput Biol Med; 2023 Feb; 153():106540. PubMed ID: 36646022 [TBL] [Abstract][Full Text] [Related]
24. Determination of Corneal Biomechanical Behavior Eliasy A; Chen KJ; Vinciguerra R; Lopes BT; Abass A; Vinciguerra P; Ambrósio R; Roberts CJ; Elsheikh A Front Bioeng Biotechnol; 2019; 7():105. PubMed ID: 31157217 [No Abstract] [Full Text] [Related]
25. Air puff induced corneal vibrations: theoretical simulations and clinical observations. Han Z; Tao C; Zhou D; Sun Y; Zhou C; Ren Q; Roberts CJ J Refract Surg; 2014 Mar; 30(3):208-13. PubMed ID: 24763727 [TBL] [Abstract][Full Text] [Related]
26. [Evaluation of corneal biomechanical properties in glaucoma and control patients by dynamic Scheimpflug corneal imaging technology]. Coste V; Schweitzer C; Paya C; Touboul D; Korobelnik JF J Fr Ophtalmol; 2015 Jun; 38(6):504-13. PubMed ID: 25976131 [TBL] [Abstract][Full Text] [Related]
27. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. Liu J; Roberts CJ J Cataract Refract Surg; 2005 Jan; 31(1):146-55. PubMed ID: 15721707 [TBL] [Abstract][Full Text] [Related]
28. Novel Method of Measuring Corneal Viscoelasticity Using the Corvis ST Tonometer. Boszczyk A; Kasprzak H; Przeździecka-Dołyk J J Clin Med; 2022 Jan; 11(1):. PubMed ID: 35012002 [TBL] [Abstract][Full Text] [Related]
29. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models. Huang L; Shen M; Liu T; Zhang Y; Wang Y J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923 [TBL] [Abstract][Full Text] [Related]
30. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Pepose JS; Feigenbaum SK; Qazi MA; Sanderson JP; Roberts CJ Am J Ophthalmol; 2007 Jan; 143(1):39-47. PubMed ID: 17188041 [TBL] [Abstract][Full Text] [Related]
31. [Dynamic Scheimpflug Analyzer (Corvis ST) for measurement of corneal biomechanical parameters : A praxis-related overview]. Herber R; Terai N; Pillunat KR; Raiskup F; Pillunat LE; Spörl E Ophthalmologe; 2018 Aug; 115(8):635-643. PubMed ID: 29767348 [TBL] [Abstract][Full Text] [Related]
32. Numerical analysis of corneal curvature dynamics based on Corvis tonometer images. Kasprzak H; Boszczyk A J Biophotonics; 2016 May; 9(5):436-44. PubMed ID: 26997615 [TBL] [Abstract][Full Text] [Related]
33. Biomechanical Properties of the Cornea Measured With the Dynamic Scheimpflug Analyzer in Young Healthy Adults. Lee H; Kang DS; Ha BJ; Choi JY; Kim EK; Seo KY; Kim HY; Kim TI Cornea; 2017 Jan; 36(1):53-58. PubMed ID: 27560031 [TBL] [Abstract][Full Text] [Related]
34. Corneal biomechanical properties: precision and influence on tonometry. Ogbuehi KC; Osuagwu UL Cont Lens Anterior Eye; 2014 Jun; 37(3):124-31. PubMed ID: 24121009 [TBL] [Abstract][Full Text] [Related]
35. [How does central cornea thickness influence intraocular pressure during applanation and contour tonometry?]. Schwenteck T; Knappe M; Moros I Klin Monbl Augenheilkd; 2012 Sep; 229(9):917-27. PubMed ID: 22972357 [TBL] [Abstract][Full Text] [Related]
36. Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. Ji C; Yu J; Li T; Tian L; Huang Y; Wang Y; Zheng Y Biomed Eng Online; 2015 Jun; 14():53. PubMed ID: 26040948 [TBL] [Abstract][Full Text] [Related]
37. Non-contact tonometry using Corvis ST: analysis of corneal vibrations and their relation with intraocular pressure. Boszczyk A; Kasprzak H; Siedlecki D J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B28-B34. PubMed ID: 31044952 [TBL] [Abstract][Full Text] [Related]
38. [Alterations in intraocular pressure and the CorVis parameters after LASIK]. Anton A; Neuburger M; Jordan JF; Wecker T; Lübke J; Heinzelmann S; Lapp T; Böhringer D; Reinhard T; Maier P Ophthalmologe; 2017 May; 114(5):445-449. PubMed ID: 27620918 [TBL] [Abstract][Full Text] [Related]
39. Corneal deformation measurement using Scheimpflug noncontact tonometry. Hon Y; Lam AK Optom Vis Sci; 2013 Jan; 90(1):e1-8. PubMed ID: 23238261 [TBL] [Abstract][Full Text] [Related]
40. A corneal elastic dynamic model derived from Scheimpflug imaging technology. Shih PJ; Cao HJ; Huang CJ; Wang IJ; Shih WP; Yen JY Ophthalmic Physiol Opt; 2015 Nov; 35(6):663-72. PubMed ID: 26353939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]