These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 29658574)
21. Application of weighted gene co‑expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Qin L; Zeng J; Shi N; Chen L; Wang L Mol Med Rep; 2020 Jun; 21(6):2533-2543. PubMed ID: 32323816 [TBL] [Abstract][Full Text] [Related]
22. Identification of candidate genes and long non-coding RNAs associated with the effect of ATP5J in colorectal cancer. Bai B; Xie B; Pan Z; Shan L; Zhao J; Zhu H Int J Oncol; 2018 Apr; 52(4):1129-1138. PubMed ID: 29484395 [TBL] [Abstract][Full Text] [Related]
23. Identification of key genes and pathways involved in microsatellite instability in colorectal cancer. Yu C; Hong H; Zhang S; Zong Y; Ma J; Lu A; Sun J; Zheng M Mol Med Rep; 2019 Mar; 19(3):2065-2076. PubMed ID: 30664178 [TBL] [Abstract][Full Text] [Related]
24. Integrated regulatory mechanisms of miRNAs and targeted genes involved in colorectal cancer. Wang J; Yu H; Ye L; Jin L; Yu M; Lv Y Int J Clin Exp Pathol; 2015; 8(1):517-29. PubMed ID: 25755742 [TBL] [Abstract][Full Text] [Related]
25. Weighted gene co‑expression network analysis for identifying hub genes in association with prognosis in Wilms tumor. Wang X; Song P; Huang C; Yuan N; Zhao X; Xu C Mol Med Rep; 2019 Mar; 19(3):2041-2050. PubMed ID: 30664180 [TBL] [Abstract][Full Text] [Related]
26. Prediction and Validation of Hub Genes Associated with Colorectal Cancer by Integrating PPI Network and Gene Expression Data. Xiong Y; You W; Wang R; Peng L; Fu Z Biomed Res Int; 2017; 2017():2421459. PubMed ID: 29209625 [TBL] [Abstract][Full Text] [Related]
27. In-depth analysis of the critical genes and pathways in colorectal cancer. Liu F; Ji F; Ji Y; Jiang Y; Sun X; Lu Y; Zhang L; Han Y; Liu X Int J Mol Med; 2015 Oct; 36(4):923-30. PubMed ID: 26239303 [TBL] [Abstract][Full Text] [Related]
28. Identification of disrupted pathways in ulcerative colitis-related colorectal carcinoma by systematic tracking the dysregulated modules. Wu D; Li Q; Song G; Lu J J BUON; 2016; 21(2):366-74. PubMed ID: 27273946 [TBL] [Abstract][Full Text] [Related]
29. Systematic analysis of mRNA expression profiles in NSCLC cell lines to screen metastasis-related genes. Liu Y; Liu L; Yu T; Lin HC; Chu D; Deng W; Yan MX; Li J; Yao M Mol Med Rep; 2016 Dec; 14(6):5093-5103. PubMed ID: 27840927 [TBL] [Abstract][Full Text] [Related]
30. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer. Peng C; Ma W; Xia W; Zheng W Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450 [TBL] [Abstract][Full Text] [Related]
31. SPON2, a newly identified target gene of MACC1, drives colorectal cancer metastasis in mice and is prognostic for colorectal cancer patient survival. Schmid F; Wang Q; Huska MR; Andrade-Navarro MA; Lemm M; Fichtner I; Dahlmann M; Kobelt D; Walther W; Smith J; Schlag PM; Stein U Oncogene; 2016 Nov; 35(46):5942-5952. PubMed ID: 26686083 [TBL] [Abstract][Full Text] [Related]
32. Bioinformatics analysis of gene expression data for the identification of critical genes in breast invasive carcinoma. Li Y; Wang Y Mol Med Rep; 2017 Dec; 16(6):8657-8664. PubMed ID: 28990063 [TBL] [Abstract][Full Text] [Related]
33. TNK2 as a key drug target for the treatment of metastatic colorectal cancer. Qi L; Ding Y Int J Biol Macromol; 2018 Nov; 119():48-52. PubMed ID: 30036625 [TBL] [Abstract][Full Text] [Related]
34. Transcriptomic landscape of early age onset of colorectal cancer identifies novel genes and pathways in Indian CRC patients. Singh MP; Rai S; Singh NK; Srivastava S Sci Rep; 2021 Jun; 11(1):11765. PubMed ID: 34083590 [TBL] [Abstract][Full Text] [Related]
35. Discovery of the Anti-Tumor Mechanism of Calycosin Against Colorectal Cancer by Using System Pharmacology Approach. Huang C; Li R; Shi W; Huang Z Med Sci Monit; 2019 Jul; 25():5589-5593. PubMed ID: 31352466 [TBL] [Abstract][Full Text] [Related]
36. In silico identification of microRNAs as candidate colorectal cancer biomarkers. Fadaka AO; Klein A; Pretorius A Tumour Biol; 2019 Nov; 41(11):1010428319883721. PubMed ID: 31718480 [TBL] [Abstract][Full Text] [Related]
37. Transcriptome analysis in primary colorectal cancer tissues from patients with and without liver metastases using next-generation sequencing. Wang S; Zhang C; Zhang Z; Qian W; Sun Y; Ji B; Zhang Y; Zhu C; Ji D; Wang Q; Sun Y Cancer Med; 2017 Aug; 6(8):1976-1987. PubMed ID: 28745433 [TBL] [Abstract][Full Text] [Related]
38. Identification of genes involved in the four stages of colorectal cancer: Gene expression profiling. Shi G; Wang Y; Zhang C; Zhao Z; Sun X; Zhang S; Fan J; Zhou C; Zhang J; Zhang H; Liu J Mol Cell Probes; 2018 Feb; 37():39-47. PubMed ID: 29179987 [TBL] [Abstract][Full Text] [Related]
39. Identification of prostate cancer hub genes and therapeutic agents using bioinformatics approach. Fang E; Zhang X; Wang Q; Wang D Cancer Biomark; 2017 Dec; 20(4):553-561. PubMed ID: 28800317 [TBL] [Abstract][Full Text] [Related]
40. Screening potential biomarkers for colorectal cancer based on circular RNA chips. Chen S; Zhang L; Su Y; Zhang X Oncol Rep; 2018 Jun; 39(6):2499-2512. PubMed ID: 29658599 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]