These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 29658720)
1. Adsorption Behavior of Lysozyme at Titanium Oxide-Water Interfaces. Forov Y; Paulus M; Dogan S; Salmen P; Weis C; Gahlmann T; Behrendt A; Albers C; Elbers M; Schnettger W; Egger S; Zwar E; Rehage H; Kiesel I; Riedl T; Tolan M Langmuir; 2018 May; 34(19):5403-5408. PubMed ID: 29658720 [TBL] [Abstract][Full Text] [Related]
2. In situ control of the oxide layer on thermally evaporated titanium and lysozyme adsorption by means of electrochemical quartz crystal microbalance with dissipation. Van De Keere I; Svedhem S; Högberg H; Vereecken J; Kasemo B; Hubin A ACS Appl Mater Interfaces; 2009 Feb; 1(2):301-10. PubMed ID: 20353217 [TBL] [Abstract][Full Text] [Related]
3. A prediction method for the isoelectric point of binary protein mixtures of bovine serum albumin and lysozyme adsorbed on colloidal titania and alumina particles. Rezwan K; Meier LP; Gauckler LJ Langmuir; 2005 Apr; 21(8):3493-7. PubMed ID: 15807593 [TBL] [Abstract][Full Text] [Related]
4. Adsorption behavior of lysozyme and Tween 80 at hydrophilic and hydrophobic silica-water interfaces. Joshi O; McGuire J Appl Biochem Biotechnol; 2009 Feb; 152(2):235-48. PubMed ID: 18478369 [TBL] [Abstract][Full Text] [Related]
5. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study. Evers F; Shokuie K; Paulus M; Sternemann C; Czeslik C; Tolan M Langmuir; 2008 Sep; 24(18):10216-21. PubMed ID: 18715021 [TBL] [Abstract][Full Text] [Related]
6. Salt induced reduction of lysozyme adsorption at charged interfaces. Göhring H; Paulus M; Salmen P; Wirkert F; Kruse T; Degen P; Stuhr S; Rehage H; Tolan M J Phys Condens Matter; 2015 Jun; 27(23):235103. PubMed ID: 25992483 [TBL] [Abstract][Full Text] [Related]
7. Lysozyme adsorption at a silica surface using simulation and experiment: effects of pH on protein layer structure. Kubiak-Ossowska K; Cwieka M; Kaczynska A; Jachimska B; Mulheran PA Phys Chem Chem Phys; 2015 Oct; 17(37):24070-7. PubMed ID: 26315945 [TBL] [Abstract][Full Text] [Related]
8. Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry. Lu JR; Swann MJ; Peel LL; Freeman NJ Langmuir; 2004 Mar; 20(5):1827-32. PubMed ID: 15801450 [TBL] [Abstract][Full Text] [Related]
9. Adsorption and Unfolding of Lysozyme at a Polarized Aqueous-Organic Liquid Interface. Arooj M; Gandhi NS; Kreck CA; Arrigan DW; Mancera RL J Phys Chem B; 2016 Mar; 120(12):3100-12. PubMed ID: 26950406 [TBL] [Abstract][Full Text] [Related]
10. Structure and denaturation of adsorbed lysozyme at the air-water interface. Postel C; Abillon O; Desbat B J Colloid Interface Sci; 2003 Oct; 266(1):74-81. PubMed ID: 12957584 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. van der Veen M; Norde W; Stuart MC Colloids Surf B Biointerfaces; 2004 May; 35(1):33-40. PubMed ID: 15261053 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties of interfacial films formed by lysozyme self-assembly at the air-water interface. Malcolm AS; Dexter AF; Middelberg AP Langmuir; 2006 Oct; 22(21):8897-905. PubMed ID: 17014133 [TBL] [Abstract][Full Text] [Related]
13. Behavior of lysozyme at the electrified water/room temperature ionic liquid interface. Alvarez de Eulate E; Silvester DS; Arrigan DW Chem Asian J; 2012 Nov; 7(11):2559-61. PubMed ID: 22829567 [TBL] [Abstract][Full Text] [Related]
14. Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size. Yu Q; Zhang Y; Chen H; Wu Z; Huang H; Cheng C Colloids Surf B Biointerfaces; 2010 Apr; 76(2):468-74. PubMed ID: 20045297 [TBL] [Abstract][Full Text] [Related]
15. Adsorption and Conformation Behavior of Lysozyme on a Gold Surface Determined by QCM-D, MP-SPR, and FTIR. Komorek P; Martin E; Jachimska B Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525751 [TBL] [Abstract][Full Text] [Related]
16. Coverage-dependent morphology of PEGylated lysozyme layers adsorbed on silica. Pai SS; Heinrich F; Canady AL; Przybycien TM; Tilton RD J Colloid Interface Sci; 2012 Mar; 370(1):170-5. PubMed ID: 22265232 [TBL] [Abstract][Full Text] [Related]
17. Secondary structure and folding stability of proteins adsorbed on silica particles - Pressure versus temperature denaturation. Cinar S; Czeslik C Colloids Surf B Biointerfaces; 2015 May; 129():161-8. PubMed ID: 25858190 [TBL] [Abstract][Full Text] [Related]
18. Quantitative analysis of protein adsorption on a planar surface by Fourier transform infrared spectroscopy: lysozyme adsorbed on hydrophobic silicon-containing polymer. Yokoyama Y; Ishiguro R; Maeda H; Mukaiyama M; Kameyama K; Hiramatsu K J Colloid Interface Sci; 2003 Dec; 268(1):23-32. PubMed ID: 14611767 [TBL] [Abstract][Full Text] [Related]
19. Concentration effects on adsorption of bacteriophage T4 lysozyme stability variants to silica. Lee WK; McGuire J; Bothwell MK J Colloid Interface Sci; 2002 Aug; 252(2):473-6. PubMed ID: 16290814 [TBL] [Abstract][Full Text] [Related]
20. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems. Yadav I; Kumar S; Aswal VK; Kohlbrecher J Langmuir; 2017 Feb; 33(5):1227-1238. PubMed ID: 28079383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]