These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29658884)

  • 1. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features.
    Samaraweera N; Larkin JM; Chan KL; Mithraratne K
    J Phys Condens Matter; 2018 Jun; 30(22):225301. PubMed ID: 29658884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.
    Zhou Y; Hu M
    Nano Lett; 2016 Oct; 16(10):6178-6187. PubMed ID: 27603153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires.
    Qu X; Gu J
    RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon localization and resonance in thermal transport of pillar-based GaAs nanowires.
    Chen J; Hou Z; Chen H; Wang Z
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 35995045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity and heat transport properties of nitrogen-doped graphene.
    Goharshadi EK; Mahdizadeh SJ
    J Mol Graph Model; 2015 Nov; 62():74-80. PubMed ID: 26386455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring thermal transport and confinement effect of GaN/Si
    Yang Y; Yuan K; Wang Z
    J Phys Condens Matter; 2024 Sep; 36(50):. PubMed ID: 39208841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar surface effects on the thermal conductivity of ZnO nanowires: a shell-like surface reconstruction-induced preserving mechanism.
    Jiang JW; Park HS; Rabczuk T
    Nanoscale; 2013 Nov; 5(22):11035-43. PubMed ID: 24071784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering.
    Zhou Y; Zhang X; Hu M
    Nano Lett; 2017 Feb; 17(2):1269-1276. PubMed ID: 28128960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mean Free Path Suppression of Low-Frequency Phonons in SiGe Nanowires.
    Smith B; Fleming G; Parrish KD; Wen F; Fleming E; Jarvis K; Tutuc E; McGaughey AJH; Shi L
    Nano Lett; 2020 Nov; 20(11):8384-8391. PubMed ID: 33054227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Ge clustering on the thermal conductivity of SiGe nanowires: atomistic simulation study.
    Kuryliuk V; Tyvonovych O; Semchuk S
    Phys Chem Chem Phys; 2023 Feb; 25(8):6263-6269. PubMed ID: 36762456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon thermal transport outside of local equilibrium in nanowires via molecular dynamics.
    Zhou Y; Strachan A
    J Chem Phys; 2013 Mar; 138(12):124704. PubMed ID: 23556739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga
    Yan Z; Kumar S
    Phys Chem Chem Phys; 2018 Nov; 20(46):29236-29242. PubMed ID: 30427340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice thermal conductivity crossovers in semiconductor nanowires.
    Mingo N; Broido DA
    Phys Rev Lett; 2004 Dec; 93(24):246106. PubMed ID: 15697834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.
    Xiong S; Sääskilahti K; Kosevich YA; Han H; Donadio D; Volz S
    Phys Rev Lett; 2016 Jul; 117(2):025503. PubMed ID: 27447516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects.
    Bui CT; Xie R; Zheng M; Zhang Q; Sow CH; Li B; Thong JT
    Small; 2012 Mar; 8(5):738-45. PubMed ID: 22162412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal.
    Wang X; Kaviany M; Huang B
    Nanoscale; 2017 Nov; 9(45):18022-18031. PubMed ID: 29131229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Divergent Thermal Conductivity in Single Polythiophene Chains Using Green-Kubo Modal Analysis and Sonification.
    Lv W; Winters RM; DeAngelis F; Weinberg G; Henry A
    J Phys Chem A; 2017 Aug; 121(30):5586-5596. PubMed ID: 28692265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of a single Bi₀.₅Sb₁.₅Te₃ single-crystalline nanowire.
    Li L; Jin C; Xu S; Yang J; Du H; Li G
    Nanotechnology; 2014 Oct; 25(41):415704. PubMed ID: 25249271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Thermal Conductivity in Nanowires by Combined Engineering of Crystal Phase and Isotope Disorder.
    Mukherjee S; Givan U; Senz S; de la Mata M; Arbiol J; Moutanabbir O
    Nano Lett; 2018 May; 18(5):3066-3075. PubMed ID: 29694788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.