These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29658928)

  • 1. A Burrowing/Tunneling Assay for Detection of Hypoxia in Drosophila melanogaster Larvae.
    Qiang KM; Zhou F; Beckingham KM
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29658928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure to Burrow and Tunnel Reveals Roles for jim lovell in the Growth and Endoreplication of the Drosophila Larval Tracheae.
    Zhou F; Qiang KM; Beckingham KM
    PLoS One; 2016; 11(8):e0160233. PubMed ID: 27494251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.
    Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF
    J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster.
    Callier V; Hand SC; Campbell JB; Biddulph T; Harrison JF
    J Exp Biol; 2015 Sep; 218(Pt 18):2927-34. PubMed ID: 26206351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development.
    Sawin-McCormack EP; Sokolowski MB; Campos AR
    J Neurogenet; 1995 Nov; 10(2):119-35. PubMed ID: 8592272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior.
    Kim CS; Seong KM; Lee BS; Lee IK; Yang KH; Kim JY; Nam SY
    J Radiat Res; 2015 May; 56(3):475-84. PubMed ID: 25792464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of social behavior in fruit fly larvae.
    Durisko Z; Kemp R; Mubasher R; Dukas R
    PLoS One; 2014; 9(4):e95495. PubMed ID: 24740198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated method to assay locomotor activity in third instar Drosophila melanogaster larvae.
    Graham S; Rogers RP; Alper RH
    J Pharmacol Toxicol Methods; 2016; 77():76-80. PubMed ID: 26554339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Larval foraging behaviour and competition in Drosophila melanogaster.
    Ruiz-Dubreuil G; Burnet B; Connolly K; Furness P
    Heredity (Edinb); 1996 Jan; 76 ( Pt 1)():55-64. PubMed ID: 8575932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larval competition in Drosophila melanogaster. I. Estimation of larval growth parameters.
    de Miranda JR; Eggleston P
    Heredity (Edinb); 1988 Apr; 60 ( Pt 2)():205-12. PubMed ID: 3130339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster.
    Henry JR; Harrison JF
    J Exp Biol; 2004 Sep; 207(Pt 20):3559-67. PubMed ID: 15339952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prepupal building behavior in Drosophila melanogaster and its evolution under resource and time constraints.
    Narasimha S; Kolly S; Sokolowski MB; Kawecki TJ; Vijendravarma RK
    PLoS One; 2015; 10(2):e0117280. PubMed ID: 25671711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic compass orientation by larval Drosophila melanogaster.
    Dommer DH; Gazzolo PJ; Painter MS; Phillips JB
    J Insect Physiol; 2008 Apr; 54(4):719-26. PubMed ID: 18359039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster.
    Heinrich EC; Farzin M; Klok CJ; Harrison JF
    J Exp Biol; 2011 May; 214(Pt 9):1419-27. PubMed ID: 21490250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster.
    Callier V; Shingleton AW; Brent CS; Ghosh SM; Kim J; Harrison JF
    J Exp Biol; 2013 Dec; 216(Pt 23):4334-40. PubMed ID: 24259256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tamas gene, identified as a mutation that disrupts larval behavior in Drosophila melanogaster, codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-gamma125).
    Iyengar B; Roote J; Campos AR
    Genetics; 1999 Dec; 153(4):1809-24. PubMed ID: 10581287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae.
    Rajamohan A; Sinclair BJ
    J Insect Physiol; 2008 Apr; 54(4):708-18. PubMed ID: 18342328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing pains: development of the larval nocifensive response in Drosophila.
    Sulkowski MJ; Kurosawa MS; Cox DN
    Biol Bull; 2011 Dec; 221(3):300-6. PubMed ID: 22186918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.
    Jovanović B; Cvetković VJ; Mitrović TLj
    Chemosphere; 2016 Feb; 144():43-9. PubMed ID: 26344147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.
    Guo Y; Wang Y; Zhang W; Meltzer S; Zanini D; Yu Y; Li J; Cheng T; Guo Z; Wang Q; Jacobs JS; Sharma Y; Eberl DF; Göpfert MC; Jan LY; Jan YN; Wang Z
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7243-8. PubMed ID: 27298354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.