These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1344 related articles for article (PubMed ID: 29659067)

  • 1. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
    Song Y; Zhang YD; Yan X; Liu H; Zhou M; Hu B; Yang G
    J Magn Reson Imaging; 2018 Dec; 48(6):1570-1577. PubMed ID: 29659067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2.
    Chen T; Li M; Gu Y; Zhang Y; Yang S; Wei C; Wu J; Li X; Zhao W; Shen J
    J Magn Reson Imaging; 2019 Mar; 49(3):875-884. PubMed ID: 30230108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.
    Aldoj N; Lukas S; Dewey M; Penzkofer T
    Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.
    Zhu Y; Wei R; Gao G; Ding L; Zhang X; Wang X; Zhang J
    J Magn Reson Imaging; 2019 Apr; 49(4):1149-1156. PubMed ID: 30350434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using support vector machine analysis to assess PartinMR: A new prediction model for organ-confined prostate cancer.
    Wang J; Wu CJ; Bao ML; Zhang J; Shi HB; Zhang YD
    J Magn Reson Imaging; 2018 Aug; 48(2):499-506. PubMed ID: 29437268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preliminary applicability evaluation of Prostate Imaging Reporting and Data System version 2 diagnostic score in 3.0T multi-parameters magnetic resonance imaging combined with prostate specific antigen density for prostate cancer].
    Zuo MZ; Zhao WL; Wei CG; Zhang CY; Wen R; Gu YF; Li MJ; Zhang YY; Wu JF; Li X; Shen JK
    Zhonghua Yi Xue Za Zhi; 2017 Dec; 97(47):3693-3698. PubMed ID: 29325321
    [No Abstract]   [Full Text] [Related]  

  • 8. Prospective comparison of a fast 1.5-T biparametric with the 3.0-T multiparametric ESUR magnetic resonance imaging protocol as a triage test for men at risk of prostate cancer.
    Van Nieuwenhove S; Saussez TP; Thiry S; Trefois P; Annet L; Michoux N; Lecouvet F; Tombal B
    BJU Int; 2019 Mar; 123(3):411-420. PubMed ID: 30240059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebiopsy multiparametric MRI-based risk score for predicting prostate cancer in biopsy-naive men with prostate-specific antigen between 4-10 ng/mL.
    Dwivedi DK; Kumar R; Dwivedi AK; Bora GS; Thulkar S; Sharma S; Gupta SD; Jagannathan NR
    J Magn Reson Imaging; 2018 May; 47(5):1227-1236. PubMed ID: 28872226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided diagnosis of prostate cancer based on deep neural networks from multi-parametric magnetic resonance imaging.
    Yi Z; Ou Z; Hu J; Qiu D; Quan C; Othmane B; Wang Y; Wu L
    Front Physiol; 2022; 13():918381. PubMed ID: 36105290
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiparametric MRI in detection and staging of prostate cancer.
    Boesen L
    Dan Med J; 2017 Feb; 64(2):. PubMed ID: 28157066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer aided detection in prostate cancer diagnostics: A promising alternative to biopsy? A retrospective study from 104 lesions with histological ground truth.
    Thon A; Teichgräber U; Tennstedt-Schenk C; Hadjidemetriou S; Winzler S; Malich A; Papageorgiou I
    PLoS One; 2017; 12(10):e0185995. PubMed ID: 29023572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis.
    Wu M; Krishna S; Thornhill RE; Flood TA; McInnes MDF; Schieda N
    J Magn Reson Imaging; 2019 Sep; 50(3):940-950. PubMed ID: 30701625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI.
    Chen Q; Hu S; Long P; Lu F; Shi Y; Li Y
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819858363. PubMed ID: 31221034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated nomogram combining deep learning, Prostate Imaging-Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study.
    Hiremath A; Shiradkar R; Fu P; Mahran A; Rastinehad AR; Tewari A; Tirumani SH; Purysko A; Ponsky L; Madabhushi A
    Lancet Digit Health; 2021 Jul; 3(7):e445-e454. PubMed ID: 34167765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autosegmentation of Prostate Zones and Cancer Regions from Biparametric Magnetic Resonance Images by Using Deep-Learning-Based Neural Networks.
    Lai CC; Wang HK; Wang FN; Peng YC; Lin TP; Peng HH; Shen SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study.
    Sanford T; Harmon SA; Turkbey EB; Kesani D; Tuncer S; Madariaga M; Yang C; Sackett J; Mehralivand S; Yan P; Xu S; Wood BJ; Merino MJ; Pinto PA; Choyke PL; Turkbey B
    J Magn Reson Imaging; 2020 Nov; 52(5):1499-1507. PubMed ID: 32478955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 68.