These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. DCE-MRI of the prostate using shutter-speed vs. Tofts model for tumor characterization and assessment of aggressiveness. Hectors SJ; Besa C; Wagner M; Jajamovich GH; Haines GK; Lewis S; Tewari A; Rastinehad A; Huang W; Taouli B J Magn Reson Imaging; 2017 Sep; 46(3):837-849. PubMed ID: 28092414 [TBL] [Abstract][Full Text] [Related]
24. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Le MH; Chen J; Wang L; Wang Z; Liu W; Cheng KT; Yang X Phys Med Biol; 2017 Jul; 62(16):6497-6514. PubMed ID: 28582269 [TBL] [Abstract][Full Text] [Related]
25. A valuable MRI examination method for prostate cancer screening. Yang X; Shan L; Cao H; Jiang X; Ma X Medicine (Baltimore); 2020 Nov; 99(48):e23134. PubMed ID: 33235074 [TBL] [Abstract][Full Text] [Related]
26. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139 [TBL] [Abstract][Full Text] [Related]
27. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Ciritsis A; Rossi C; Eberhard M; Marcon M; Becker AS; Boss A Eur Radiol; 2019 Oct; 29(10):5458-5468. PubMed ID: 30927100 [TBL] [Abstract][Full Text] [Related]
28. Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Arif M; Schoots IG; Castillo Tovar J; Bangma CH; Krestin GP; Roobol MJ; Niessen W; Veenland JF Eur Radiol; 2020 Dec; 30(12):6582-6592. PubMed ID: 32594208 [TBL] [Abstract][Full Text] [Related]
29. Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High-Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy. Han C; Ma S; Liu X; Liu Y; Li C; Zhang Y; Zhang X; Wang X J Magn Reson Imaging; 2021 Dec; 54(6):1892-1901. PubMed ID: 33682286 [TBL] [Abstract][Full Text] [Related]
30. Comparison of a Deep Learning-Accelerated vs. Conventional T2-Weighted Sequence in Biparametric MRI of the Prostate. Tong A; Bagga B; Petrocelli R; Smereka P; Vij A; Qian K; Grimm R; Kamen A; Keerthivasan MB; Nickel MD; von Busch H; Chandarana H J Magn Reson Imaging; 2023 Oct; 58(4):1055-1064. PubMed ID: 36651358 [TBL] [Abstract][Full Text] [Related]
31. Predicting Prostate Biopsy Outcomes: A Preliminary Investigation on Screening with Ultrahigh B-Value Diffusion-Weighted Imaging as an Innovative Diagnostic Biomarker. Zhang K; Shen Y; Zhang X; Ma L; Wang H; An N; Guo A; Ye H PLoS One; 2016; 11(3):e0151176. PubMed ID: 26963936 [TBL] [Abstract][Full Text] [Related]
32. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Schelb P; Kohl S; Radtke JP; Wiesenfarth M; Kickingereder P; Bickelhaupt S; Kuder TA; Stenzinger A; Hohenfellner M; Schlemmer HP; Maier-Hein KH; Bonekamp D Radiology; 2019 Dec; 293(3):607-617. PubMed ID: 31592731 [TBL] [Abstract][Full Text] [Related]
33. Luminal Water Imaging: Comparison With Diffusion-Weighted Imaging (DWI) and PI-RADS for Characterization of Prostate Cancer Aggressiveness. Hectors SJ; Said D; Gnerre J; Tewari A; Taouli B J Magn Reson Imaging; 2020 Jul; 52(1):271-279. PubMed ID: 31961049 [TBL] [Abstract][Full Text] [Related]
34. 1.5-T multiparametric MRI using PI-RADS: a region by region analysis to localize the index-tumor of prostate cancer in patients undergoing prostatectomy. Reisæter LA; Fütterer JJ; Halvorsen OJ; Nygård Y; Biermann M; Andersen E; Gravdal K; Haukaas S; Monssen JA; Huisman HJ; Akslen LA; Beisland C; Rørvik J Acta Radiol; 2015 Apr; 56(4):500-11. PubMed ID: 24819231 [TBL] [Abstract][Full Text] [Related]
35. Weakly Supervised MRI Slice-Level Deep Learning Classification of Prostate Cancer Approximates Full Voxel- and Slice-Level Annotation: Effect of Increasing Training Set Size. Weißer C; Netzer N; Görtz M; Schütz V; Hielscher T; Schwab C; Hohenfellner M; Schlemmer HP; Maier-Hein KH; Bonekamp D J Magn Reson Imaging; 2024 Apr; 59(4):1409-1422. PubMed ID: 37504495 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of Multiparametric Magnetic Resonance Imaging in Detection and Prediction of Prostate Cancer. Wang R; Wang H; Zhao C; Hu J; Jiang Y; Tong Y; Liu T; Huang R; Wang X PLoS One; 2015; 10(6):e0130207. PubMed ID: 26067423 [TBL] [Abstract][Full Text] [Related]
37. Prostate Cancer Detection with Multiparametric Magnetic Resonance Imaging: Prostate Imaging Reporting and Data System Version 1 versus Version 2. Feng ZY; Wang L; Min XD; Wang SG; Wang GP; Cai J Chin Med J (Engl); 2016 Oct; 129(20):2451-2459. PubMed ID: 27748338 [TBL] [Abstract][Full Text] [Related]
38. Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate. Johnson PM; Tong A; Donthireddy A; Melamud K; Petrocelli R; Smereka P; Qian K; Keerthivasan MB; Chandarana H; Knoll F J Magn Reson Imaging; 2022 Jul; 56(1):184-195. PubMed ID: 34877735 [TBL] [Abstract][Full Text] [Related]
39. Computer-Aided Diagnosis Scheme for Distinguishing Between Benign and Malignant Masses on Breast DCE-MRI Images Using Deep Convolutional Neural Network with Bayesian Optimization. Hizukuri A; Nakayama R; Nara M; Suzuki M; Namba K J Digit Imaging; 2021 Feb; 34(1):116-123. PubMed ID: 33159279 [TBL] [Abstract][Full Text] [Related]
40. Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network. Lee JH; Joo I; Kang TW; Paik YH; Sinn DH; Ha SY; Kim K; Choi C; Lee G; Yi J; Bang WC Eur Radiol; 2020 Feb; 30(2):1264-1273. PubMed ID: 31478087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]