These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29659104)

  • 1. Photon Yield Enhancement of Red Fluorophores at Cryogenic Temperatures.
    Hulleman CN; Li W; Gregor I; Rieger B; Enderlein J
    Chemphyschem; 2018 Jul; 19(14):1774-1780. PubMed ID: 29659104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging.
    Dahlberg PD; Sartor AM; Wang J; Saurabh S; Shapiro L; Moerner WE
    J Am Chem Soc; 2018 Oct; 140(39):12310-12313. PubMed ID: 30222332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule.
    Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE
    J Am Chem Soc; 2016 Aug; 138(33):10398-401. PubMed ID: 27479076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing the brightness of cyanine fluorophores for single-molecule and superresolution imaging.
    Klehs K; Spahn C; Endesfelder U; Lee SF; Fürstenberg A; Heilemann M
    Chemphyschem; 2014 Mar; 15(4):637-41. PubMed ID: 24376142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photostable and photoswitching fluorescent dyes for super-resolution imaging.
    Minoshima M; Kikuchi K
    J Biol Inorg Chem; 2017 Jul; 22(5):639-652. PubMed ID: 28083655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions.
    Kaufmann R; Schellenberger P; Seiradake E; Dobbie IM; Jones EY; Davis I; Hagen C; Grünewald K
    Nano Lett; 2014 Jul; 14(7):4171-5. PubMed ID: 24884378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions.
    Nahmani M; Lanahan C; DeRosier D; Turrigiano GG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3832-3836. PubMed ID: 28348224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution spectroscopic microscopy via photon localization.
    Dong B; Almassalha L; Urban BE; Nguyen TQ; Khuon S; Chew TL; Backman V; Sun C; Zhang HF
    Nat Commun; 2016 Jul; 7():12290. PubMed ID: 27452975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy.
    Hinterer F; Schneider MC; Hubmer S; López-Martinez M; Zelger P; Jesacher A; Ramlau R; Schütz GJ
    PLoS One; 2022; 17(2):e0263500. PubMed ID: 35120171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicolor Caged dSTORM Resolves the Ultrastructure of Synaptic Vesicles in the Brain.
    Lehmann M; Gottschalk B; Puchkov D; Schmieder P; Schwagerus S; Hackenberger CP; Haucke V; Schmoranzer J
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13230-5. PubMed ID: 26346505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced dyes enhance single-molecule localization density for live superresolution imaging.
    Carlini L; Benke A; Reymond L; Lukinavičius G; Manley S
    Chemphyschem; 2014 Mar; 15(4):750-5. PubMed ID: 24554553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanometer-localized multiple single-molecule fluorescence microscopy.
    Qu X; Wu D; Mets L; Scherer NF
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11298-303. PubMed ID: 15277661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mApple as a Red Fluorescent Protein for Cryogenic Single-Molecule Imaging with Turn-Off and Turn-On Active Control Mechanisms.
    Sartor AM; Dahlberg PD; Perez D; Moerner WE
    J Phys Chem B; 2023 Mar; 127(12):2690-2700. PubMed ID: 36943356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and development of BODIPY-based photoswitchable fluorophores to visualize cell signaling with multispectral super resolution microscopy.
    Bittel AM; Nickerson AK; Lin LJ; Nan X; Gibbs SL
    Proc SPIE Int Soc Opt Eng; 2014 Feb; 8950():. PubMed ID: 32273645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryogenic Far-Field Fluorescence Nanoscopy: Evaluation with DNA Origami.
    Furubayashi T; Ishida K; Nakata E; Morii T; Naruse K; Matsushita M; Fujiyoshi S
    J Phys Chem B; 2020 Sep; 124(35):7525-7536. PubMed ID: 32790384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast stimulated emission nanoscopy based on single molecule localization.
    Wang X; Chen D; Yu B; Niu H
    Appl Opt; 2015 Aug; 54(22):6919-23. PubMed ID: 26368110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of photostable fluorophores for molecular imaging.
    Zheng Q; Lavis LD
    Curr Opin Chem Biol; 2017 Aug; 39():32-38. PubMed ID: 28544971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher resolution in localization microscopy by slower switching of a photochromic protein.
    Mizuno H; Dedecker P; Ando R; Fukano T; Hofkens J; Miyawaki A
    Photochem Photobiol Sci; 2010 Feb; 9(2):239-48. PubMed ID: 20126801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.