BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29659246)

  • 1. Membrane Nanotubes Increase the Robustness of Giant Vesicles.
    Bhatia T; Agudo-Canalejo J; Dimova R; Lipowsky R
    ACS Nano; 2018 May; 12(5):4478-4485. PubMed ID: 29659246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
    Lipowsky R
    Faraday Discuss; 2013; 161():305-31; discussion 419-59. PubMed ID: 23805747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) Using Hyperspectral Dark-field Microscopy.
    Bhat A; Huan K; Cooks T; Boukari H; Lu Q
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29597298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure.
    Saha SK; Alam Shibly SU; Yamazaki M
    J Phys Chem B; 2020 Jul; 124(27):5588-5599. PubMed ID: 32543195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of constant tension-induced rupture of lipid membranes using activation energy.
    Karal MA; Levadnyy V; Yamazaki M
    Phys Chem Chem Phys; 2016 May; 18(19):13487-95. PubMed ID: 27125194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes.
    Liu Y; Agudo-Canalejo J; Grafmüller A; Dimova R; Lipowsky R
    ACS Nano; 2016 Jan; 10(1):463-74. PubMed ID: 26588094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Vesicles Encapsulating Aqueous Two-Phase Systems: From Phase Diagrams to Membrane Shape Transformations.
    Liu Y; Lipowsky R; Dimova R
    Front Chem; 2019; 7():213. PubMed ID: 31024898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting.
    Steinkühler J; Fonda P; Bhatia T; Zhao Z; Leomil FSC; Lipowsky R; Dimova R
    Adv Sci (Weinh); 2021 Nov; 8(21):e2102109. PubMed ID: 34569194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of Functionalized Multi-Wall Carbon Nanotubes with Giant Phospholipid Vesicles as Model Cellular Membrane System.
    Pérez-Luna V; Moreno-Aguilar C; Arauz-Lara JL; Aranda-Espinoza S; Quintana M
    Sci Rep; 2018 Dec; 8(1):17998. PubMed ID: 30573758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharide functionalization reduces lipid vesicle stiffness.
    Jahnke K; Pavlovic M; Xu W; Chen A; Knowles TPJ; Arriaga LR; Weitz DA
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2317227121. PubMed ID: 38771870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation of giant unilamellar vesicles under osmotic stress.
    Zong W; Li Q; Zhang X; Han X
    Colloids Surf B Biointerfaces; 2018 Dec; 172():459-463. PubMed ID: 30196231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine.
    Tanaka T; Sano R; Yamashita Y; Yamazaki M
    Langmuir; 2004 Oct; 20(22):9526-34. PubMed ID: 15491182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of negative membrane tension in lipid bilayers and its effect on antimicrobial peptide magainin 2-induced pore formation.
    Ahmed M; Billah MM; Tamba Y; Yamazaki M
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Curvature Promotes High Yield Spontaneous Formation of Cell-Mimetic Giant Vesicles on Nanocellulose Paper.
    Pazzi J; Subramaniam AB
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56549-56561. PubMed ID: 33284582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs.
    Sudbrack TP; Archilha NL; Itri R; Riske KA
    J Phys Chem B; 2011 Jan; 115(2):269-77. PubMed ID: 21171656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triacylglycerol-droplet-induced bilayer spontaneous curvature in giant unilamellar vesicles.
    Kataoka-Hamai C
    Biophys J; 2024 Jul; 123(13):1857-1868. PubMed ID: 38822522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
    Hamai C; Cremer PS; Musser SM
    Biophys J; 2007 Mar; 92(6):1988-99. PubMed ID: 17189305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small membranes under negative surface tension.
    Avital YY; Farago O
    J Chem Phys; 2015 Mar; 142(12):124902. PubMed ID: 25833604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures.
    Bhatia T; Husen P; Brewer J; Bagatolli LA; Hansen PL; Ipsen JH; Mouritsen OG
    Biochim Biophys Acta; 2015 Dec; 1848(12):3175-80. PubMed ID: 26417657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.