BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29659248)

  • 21. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.
    Xu W; Xie Z; Cui X; Zhao K; Zhang L; Dietrich G; Dooley KM; Wang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22533-41. PubMed ID: 26389757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sandwich-structured graphene hollow spheres limited Mn
    Zhuang H; Han M; Ma W; Ou Y; Jiang Y; Li W; Liu X; Zhao B; Zhang J
    J Colloid Interface Sci; 2021 Mar; 586():1-10. PubMed ID: 33129515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.
    Li Y; Zhang H; Chen Y; Shi Z; Cao X; Guo Z; Shen PK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):197-207. PubMed ID: 26654790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries.
    Liang J; Yu XY; Zhou H; Wu HB; Ding S; Lou XW
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12803-7. PubMed ID: 25251871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ Grown SnO
    Wang Z; Chen L; Feng J; Liu S; Wang Y; Fan Q; Zhao Y
    ChemistryOpen; 2019 Jun; 8(6):712-718. PubMed ID: 31275792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-Scale Fabrication of Core-Shell Structured C/SnO
    Cheng Y; Li Q; Wang C; Sun L; Yi Z; Wang L
    Small; 2017 Dec; 13(47):. PubMed ID: 29058829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion.
    Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3800-9. PubMed ID: 26799404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO₂ and Hollow SnO/SnO₂ and SnO₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties.
    Cho JS; Kang YC
    Small; 2015 Sep; 11(36):4673-81. PubMed ID: 26058833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries.
    He Y; Li A; Dong C; Li C; Xu L
    Chemistry; 2017 Oct; 23(55):13724-13733. PubMed ID: 28722257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SnO
    Zhou S; Zhou H; Zhang Y; Zhu K; Zhai Y; Wei D; Zeng S
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System.
    Cho JS; Ju HS; Kang YC
    Sci Rep; 2016 Apr; 6():23915. PubMed ID: 27033088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and Characterization of Sn/SnO
    Saddique J; Shen H; Ge J; Huo X; Rahman N; Mushtaq M; Althubeiti K; Al-Shehri H
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Walnut core-like hollow carbon micro/nanospheres supported SnO
    Tian Q; Chen Y; Chen F; Chen J; Yang L
    J Colloid Interface Sci; 2019 Oct; 554():424-432. PubMed ID: 31323477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries.
    Xue H; Zhao J; Tang J; Gong H; He P; Zhou H; Yamauchi Y; He J
    Chemistry; 2016 Mar; 22(14):4915-23. PubMed ID: 26918383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical SnO2 /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithium-Ion Batteries.
    Wang M; Li S; Zhang Y; Huang J
    Chemistry; 2015 Nov; 21(45):16195-202. PubMed ID: 26397841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties.
    Hong YJ; Yoon JW; Lee JH; Kang YC
    Chemistry; 2015 Jan; 21(1):371-6. PubMed ID: 25450513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bi-functional nitrogen-doped carbon protective layer on three-dimensional RGO/SnO
    Yang D; Ren H; Wu D; Zhang W; Lou X; Wang D; Cao K; Gao Z; Xu F; Jiang K
    J Colloid Interface Sci; 2019 Apr; 542():81-90. PubMed ID: 30735890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries.
    Wang X; Li Z; Zhang Z; Li Q; Guo E; Wang C; Yin L
    Nanoscale; 2015 Feb; 7(8):3604-13. PubMed ID: 25634442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.