These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29659277)

  • 1. QM/MM Study of the Formation of the Dioxetanone Ring in Fireflies through a Superoxide Ion.
    Berraud-Pache R; Lindh R; Navizet I
    J Phys Chem B; 2018 May; 122(20):5173-5182. PubMed ID: 29659277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Chemical Reactions by QM/MM Calculations: The Case of the Tautomerization in Fireflies Bioluminescent Systems.
    Berraud-Pache R; Garcia-Iriepa C; Navizet I
    Front Chem; 2018; 6():116. PubMed ID: 29719820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into the chemiluminescent decomposition of firefly dioxetanone.
    Yue L; Liu YJ; Fang WH
    J Am Chem Soc; 2012 Jul; 134(28):11632-9. PubMed ID: 22720977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Theoretical Estimation of the Bioluminescent Efficiency of the Firefly via a Nonadiabatic Molecular Dynamics Simulation.
    Yue L; Lan Z; Liu YJ
    J Phys Chem Lett; 2015 Feb; 6(3):540-8. PubMed ID: 26261976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Study on the Formation and Decomposition Mechanisms of Coelenterazine Dioxetanone.
    Xie JM; Leng Y; Cui XY; Min CG; Ren AM; Liu G; Yin Q
    J Phys Chem A; 2023 May; 127(17):3804-3813. PubMed ID: 37083412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition reaction of dioxetanone in firefly bioluminescence by computer experiment.
    Wada N; Sakai H
    J Biol Phys; 2005 Dec; 31(3-4):403-12. PubMed ID: 23345906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Protein Conformation and AMP Protonation State on Fireflies' Bioluminescent Emission.
    Garcia-Iriepa C; Navizet I
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31009993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong electron correlation in the decomposition reaction of dioxetanone with implications for firefly bioluminescence.
    Greenman L; Mazziotti DA
    J Chem Phys; 2010 Oct; 133(16):164110. PubMed ID: 21033778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QM/MM calculations on a newly synthesised oxyluciferin substrate: new insights into the conformational effect.
    Berraud-Pache R; Navizet I
    Phys Chem Chem Phys; 2016 Oct; 18(39):27460-27467. PubMed ID: 27711533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are the bio- and chemiluminescence states of the firefly oxyluciferin the same as the fluorescence state?
    Navizet I; Roca-Sanjuán D; Yue L; Liu YJ; Ferré N; Lindh R
    Photochem Photobiol; 2013; 89(2):319-25. PubMed ID: 23057607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding bacterial bioluminescence: a theoretical study of the entire process, from reduced flavin to light emission.
    Hou C; Liu YJ; Ferré N; Fang WH
    Chemistry; 2014 Jun; 20(26):7979-86. PubMed ID: 24825310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretically obtained insight into the mechanism and dioxetanone species responsible for the singlet chemiexcitation of Coelenterazine.
    Min CG; Ferreira PJO; Pinto da Silva L
    J Photochem Photobiol B; 2017 Sep; 174():18-26. PubMed ID: 28750319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical insights into the effect of pH values on oxidation processes in the emission of firefly luciferin in aqueous solution.
    Hiyama M; Akiyama H; Koga N
    Luminescence; 2017 Sep; 32(6):1100-1108. PubMed ID: 28429409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient firefly chemi/bioluminescence: evidence for chemiexcitation resulting from the decomposition of a neutral firefly dioxetanone molecule.
    Pinto da Silva L; Santos AJ; Esteves da Silva JC
    J Phys Chem A; 2013 Jan; 117(1):94-100. PubMed ID: 23244350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of efficient firefly bioluminescence via adiabatic transition state and seam of sloped conical intersection.
    Chung LW; Hayashi S; Lundberg M; Nakatsu T; Kato H; Morokuma K
    J Am Chem Soc; 2008 Oct; 130(39):12880-1. PubMed ID: 18767834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the amazing firefly bioluminescence: the formation and structures of the light emitters.
    Orlova G; Goddard JD; Brovko LY
    J Am Chem Soc; 2003 Jun; 125(23):6962-71. PubMed ID: 12783549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory study of 1,2-dioxetanone decomposition in condensed phase.
    Pinto da Silva L; Esteves da Silva JC
    J Comput Chem; 2012 Oct; 33(26):2118-23. PubMed ID: 22522749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Chen SF; Vysotski ES; Liu YJ
    J Phys Chem B; 2021 Sep; 125(37):10452-10458. PubMed ID: 34520210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones.
    Augusto FA; Francés-Monerris A; Fdez Galván I; Roca-Sanjuán D; Bastos EL; Baader WJ; Lindh R
    Phys Chem Chem Phys; 2017 Feb; 19(5):3955-3962. PubMed ID: 28106183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insight into marine bioluminescence: photochemistry of the chemiexcited Cypridina (sea firefly) lumophore.
    Ding BW; Naumov P; Liu YJ
    J Chem Theory Comput; 2015 Feb; 11(2):591-9. PubMed ID: 26580916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.