BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2965950)

  • 1. Studies on the mechanism by which tryptophan efflux from isolated synaptosomes is stimulated by depolarization.
    Collard KJ; Wilkinson LS; Lewis DJ
    Br J Pharmacol; 1988 Feb; 93(2):341-8. PubMed ID: 2965950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stimulus-induced release of 5-hydroxytryptamine and tryptophan from superfused rat brain synaptosomes.
    Collard KJ; Evans TN; Suter HA; Wilkinson LS
    J Neural Transm; 1982; 53(2-3):223-30. PubMed ID: 6176682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptosomal tryptophan uptake and efflux following lesion of central 5-hydroxytryptaminergic neurones.
    Wilkinson LS; Collard KJ
    Br J Pharmacol; 1990 Dec; 101(4):981-5. PubMed ID: 2085719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism by which monoamine oxidase inhibitors give rise to a non-calcium-dependent component in the depolarization-induced release of 5-HT from rat brain synaptosomes.
    Evans SM; Collard KJ
    Br J Pharmacol; 1988 Nov; 95(3):950-6. PubMed ID: 3264736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism by which extracellular sodium depletion causes 5-hydroxytryptamine release from rat brain synaptosomes.
    Collard KJ
    Biochim Biophys Acta; 1989 Sep; 984(3):319-25. PubMed ID: 2789079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cocaine on membrane potential, on membrane depolarization by veratridine or elevated [K]o and on sodium/potassium permeability ratios in synaptosomes from the limbic cortex of the rat.
    Wheeler DD; Edwards AM; Ondo JG
    Neuropharmacology; 1993 Feb; 32(2):195-204. PubMed ID: 8450944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake of rat brain synaptosomes as a function of membrane potential under different depolarizing conditions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1986 Mar; 372():363-77. PubMed ID: 3723411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of trifluoperazine and R 24 571 on the K+-evoked release of 5-hydroxytryptamine from superfused synaptosomes.
    Leung MT; Collard KJ
    Neuropharmacology; 1983 Sep; 22(9):1095-9. PubMed ID: 6633821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of methylmercury on neurotransmitter release from rat brain synaptosomes.
    Minnema DJ; Cooper GP; Greenland RD
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):510-21. PubMed ID: 2568702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies.
    Shafer TJ; Contreras ML; Atchison WD
    Mol Pharmacol; 1990 Jul; 38(1):102-13. PubMed ID: 2164628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization-induced release of propranolol and atenolol from rat cortical synaptosomes.
    Bright PS; Gaffney TE; Street JA; Webb JG
    Br J Pharmacol; 1985 Feb; 84(2):499-510. PubMed ID: 3919793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotine-induced depolarization of cerebral cortical synaptosomes is dependent upon sodium.
    Hillard CJ
    Neuropharmacology; 1992 Sep; 31(9):909-14. PubMed ID: 1436397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons.
    Taglialatela M; Canzoniero LM; Cragoe EJ; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):393-400. PubMed ID: 2402228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels.
    Taglialatela M; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of acetylcholine release on choline fluxes in isolated synaptic terminals.
    Marchbanks RM; Wonnacott S; Rubio MA
    J Neurochem; 1981 Feb; 36(2):379-93. PubMed ID: 7463066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of potassium-stimulated catecholamine changes in striatal synaptosomal preparations and in corpus striatum of rats: a comparative voltammetric study.
    Murgas K; Orlický J; Pavlásek J
    Gen Physiol Biophys; 1991 Aug; 10(4):421-32. PubMed ID: 1769519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of 5-hydroxytryptamine release from superfused synaptosomes by 5-hydroxytryptamine and its immediate precursors.
    Suter HA; Collard KJ
    Neurochem Res; 1983 Jun; 8(6):723-30. PubMed ID: 6604881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():419-40. PubMed ID: 2580981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyposmolarity evokes norepinephrine efflux from synaptosomes by a depolarization- and Ca2+ -dependent exocytotic mechanism.
    Tuz K; Pasantes-Morales H
    Eur J Neurosci; 2005 Oct; 22(7):1636-42. PubMed ID: 16197504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phorbol esters potentiate rapid dopamine release from median eminence and striatal synaptosomes.
    Shu C; Selmanoff M
    Endocrinology; 1988 Jun; 122(6):2699-709. PubMed ID: 3131121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.