BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29659522)

  • 1. Rice Phyllosphere Bacillus Species and Their Secreted Metabolites Suppress
    Chalivendra S; DeRobertis C; Reyes Pineda J; Ham JH; Damann K
    Toxins (Basel); 2018 Apr; 10(4):. PubMed ID: 29659522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological Control of Aflatoxin in Maize Grown in Serbia.
    Savić Z; Dudaš T; Loc M; Grahovac M; Budakov D; Jajić I; Krstović S; Barošević T; Krska R; Sulyok M; Stojšin V; Petreš M; Stankov A; Vukotić J; Bagi F
    Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32150883
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize.
    Camiletti BX; Moral J; Asensio CM; Torrico AK; Lucini EI; Giménez-Pecci MP; Michailides TJ
    Phytopathology; 2018 Jul; 108(7):818-828. PubMed ID: 29384448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of Aspergillus flavus strains in China.
    Mamo FT; Shang B; Selvaraj JN; Wang Y; Liu Y
    J Microbiol; 2018 Feb; 56(2):119-127. PubMed ID: 29392555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of an Aspergillus flavus population from maize kernels in northern Italy.
    Mauro A; Battilani P; Callicott KA; Giorni P; Pietri A; Cotty PJ
    Int J Food Microbiol; 2013 Mar; 162(1):1-7. PubMed ID: 23340386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents.
    Degola F; Berni E; Restivo FM
    Int J Food Microbiol; 2011 Apr; 146(3):235-43. PubMed ID: 21419507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.
    Alaniz Zanon MS; Clemente MP; Chulze SN
    Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation by Hyphopichia burtonii and Bacillus amyloliquefaciens of aflatoxin production by Aspergillus flavus in irradiated maize and rice grains.
    Cuero RG; Smith JE; Lacey J
    Appl Environ Microbiol; 1987 May; 53(5):1142-6. PubMed ID: 3111368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Development of a qPCR Assay to Measure
    Mitema A; Okoth S; Rafudeen SM
    Toxins (Basel); 2019 Mar; 11(3):. PubMed ID: 30934573
    [No Abstract]   [Full Text] [Related]  

  • 10. Distribution, Genetic Diversity and Biocontrol of Aflatoxigenic
    Vlajkov V; Grahovac M; Budakov D; Loc M; Pajčin I; Milić D; Novaković T; Grahovac J
    Toxins (Basel); 2021 Sep; 13(10):. PubMed ID: 34678980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific Growth and Aflatoxin Inhibition Responses to Atoxigenic
    Sweany RR; DeRobertis CD; Kaller MD; Damann KE
    Phytopathology; 2022 Oct; 112(10):2084-2098. PubMed ID: 35502929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of extrolites secreted by nonaflatoxigenic Aspergillus flavus in biocontrol efficacy.
    Moore GG; Lebar MD; Carter-Wientjes CH
    J Appl Microbiol; 2019 Apr; 126(4):1257-1264. PubMed ID: 30548988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Broilers Fed with Maize Colonized by Either Toxigenic or Atoxigenic Strains of
    Aikore MOS; Ortega-Beltran A; Eruvbetine D; Atehnkeng J; Falade TDO; Cotty PJ; Bandyopadhyay R
    Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31561495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize.
    Abbas HK; Zablotowicz RM; Horn BW; Phillips NA; Johnson BJ; Jin X; Abel CA
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Feb; 28(2):198-208. PubMed ID: 21259141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin B
    Mateo EM; Gómez JV; Gimeno-Adelantado JV; Romera D; Mateo-Castro R; Jiménez M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):1039-1051. PubMed ID: 28349747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of Aflatoxins B
    Maxwell LA; Callicott KA; Bandyopadhyay R; Mehl HL; Orbach MJ; Cotty PJ
    Plant Dis; 2021 Sep; 105(9):2343-2350. PubMed ID: 33754847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182.
    Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW
    Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in competitive ability among isolates of Aspergillus flavus from different vegetative compatibility groups during maize infection.
    Mehl HL; Cotty PJ
    Phytopathology; 2010 Feb; 100(2):150-9. PubMed ID: 20055649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn.
    Accinelli C; Abbas HK; Vicari A; Shier WT
    Pest Manag Sci; 2016 Aug; 72(8):1521-8. PubMed ID: 26518170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-occurrence of mycoflora, aflatoxins and fumonisins in maize and rice seeds from markets of different districts in Cairo, Egypt.
    Madbouly AK; Ibrahim MI; Sehab AF; Abdel-Wahhab MA
    Food Addit Contam Part B Surveill; 2012; 5(2):112-20. PubMed ID: 24779740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.