These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29659583)

  • 1. A modelling approach for exploring muscle dynamics during cyclic contractions.
    Ross SA; Nigam N; Wakeling JM
    PLoS Comput Biol; 2018 Apr; 14(4):e1006123. PubMed ID: 29659583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle shortening velocity depends on tissue inertia and level of activation during submaximal contractions.
    Ross SA; Wakeling JM
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27354711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force.
    Biewener AA; Wakeling JM; Lee SS; Arnold AS
    Integr Comp Biol; 2014 Dec; 54(6):1072-83. PubMed ID: 24928073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intrinsic muscle properties for stable hopping--stability is achieved by the force-velocity relation.
    Haeufle DF; Grimmer S; Seyfarth A
    Bioinspir Biomim; 2010 Mar; 5(1):16004. PubMed ID: 20185859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A force-similarity model of the activated muscle is able to predict primary locomotor functions.
    Kokshenev VB
    J Biomech; 2008; 41(4):912-5. PubMed ID: 18154975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hill-type muscle model with serial damping and eccentric force-velocity relation.
    Haeufle DF; Günther M; Bayer A; Schmitt S
    J Biomech; 2014 Apr; 47(6):1531-6. PubMed ID: 24612719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.
    Mörl F; Siebert T; Häufle D
    Biomech Model Mechanobiol; 2016 Feb; 15(1):245-58. PubMed ID: 26038176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images.
    Dick TJM; Biewener AA; Wakeling JM
    J Exp Biol; 2017 May; 220(Pt 9):1643-1653. PubMed ID: 28202584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination.
    Till O; Siebert T; Rode C; Blickhan R
    J Theor Biol; 2008 Nov; 255(2):176-87. PubMed ID: 18771670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size, History-Dependent, Activation and Three-Dimensional Effects on the Work and Power Produced During Cyclic Muscle Contractions.
    Ross SA; Ryan DS; Dominguez S; Nigam N; Wakeling JM
    Integr Comp Biol; 2018 Aug; 58(2):232-250. PubMed ID: 29726964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates.
    Perreault EJ; Heckman CJ; Sandercock TG
    J Biomech; 2003 Feb; 36(2):211-8. PubMed ID: 12547358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Hill-type musculotendon models with activation-force-length coupling.
    Sun L; Sun Y; Huang Z; Hou J; Wu J
    Technol Health Care; 2018; 26(6):909-920. PubMed ID: 29914041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer-graphics model of muscle activation and contraction dynamics.
    Barrett R; van Soest AJ; Neal R
    Sports Biomech; 2002 Jan; 1(1):105-21. PubMed ID: 14658138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.
    Lee SS; Arnold AS; Miara Mde B; Biewener AA; Wakeling JM
    J Biomech; 2013 Sep; 46(13):2288-95. PubMed ID: 23871235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle contraction history: modified Hill versus an exponential decay model.
    Ettema GJ; Meijer K
    Biol Cybern; 2000 Dec; 83(6):491-500. PubMed ID: 11130582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.