These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29659583)

  • 21. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The activation time-course of contractile elements estimated from in vivo fascicle behaviours during twitch contractions.
    Oda T; Himeno R; Hay DC; Kanehisa H; Fukunaga T; Kawakami Y
    J Sports Sci; 2013; 31(11):1233-41. PubMed ID: 23496431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.
    Sawicki GS; Robertson BD; Azizi E; Roberts TJ
    J Exp Biol; 2015 Oct; 218(Pt 19):3150-9. PubMed ID: 26232413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hill equation and Hatze's muscle activation dynamics complement each other: enhanced pharmacological and physiological interpretability of modelled activity-pCa curves.
    Rockenfeller R; Günther M
    J Theor Biol; 2017 Oct; 431():11-24. PubMed ID: 28755955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.
    Robertson BD; Sawicki GS
    J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy efficient hopping with Hill-type muscle properties on segmented legs.
    Rosendo A; Iida F
    Bioinspir Biomim; 2016 Apr; 11(3):036002. PubMed ID: 27070710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-dependent power output and skeletal muscle design.
    Medler S; Hulme K
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):407-17. PubMed ID: 19101645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.
    Hedenstierna S; Halldin P; Brolin K
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of human muscle energy expenditure.
    Umberger BR; Gerritsen KG; Martin PE
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects.
    Meijer K; Grootenboer HJ; Koopman HF; van der Linden BJ; Huijing PA
    J Biomech; 1998 Jun; 31(6):555-63. PubMed ID: 9755040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple Hill element-nonlinear spring model of muscle contraction biomechanics.
    Schultz AB; Faulkner JA; Kadhiresan VA
    J Appl Physiol (1985); 1991 Feb; 70(2):803-12. PubMed ID: 2022572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion.
    Al Nazer R; Klodowski A; Rantalainen T; Heinonen A; Sievänen H; Mikkola A
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):573-9. PubMed ID: 21302163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic muscle properties facilitate locomotor control - a computer simulation study.
    Gerritsen KG; van den Bogert AJ; Hulliger M; Zernicke RF
    Motor Control; 1998 Jul; 2(3):206-20. PubMed ID: 9644290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The basic mechanical structure of the skeletal muscle machinery: One model for linking microscopic and macroscopic scales.
    Günther M; Haeufle DFB; Schmitt S
    J Theor Biol; 2018 Nov; 456():137-167. PubMed ID: 30048720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling muscle function using experimentally determined subject-specific muscle properties.
    Wakeling JM; Tijs C; Konow N; Biewener AA
    J Biomech; 2021 Mar; 117():110242. PubMed ID: 33545605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
    Nagano A; Komura T; Fukashiro S; Himeno R
    J Electromyogr Kinesiol; 2005 Aug; 15(4):367-76. PubMed ID: 15811607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.