These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29659583)

  • 41. Spreading out muscle mass within a Hill-type model: a computer simulation study.
    Günther M; Röhrle O; Haeufle DF; Schmitt S
    Comput Math Methods Med; 2012; 2012():848630. PubMed ID: 23227110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanics, modulation and modelling: how muscles actuate and control movement.
    Higham TE; Biewener AA; Delp SL
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1463-5. PubMed ID: 21502117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimizing the Distribution of Leg Muscles for Vertical Jumping.
    Wong JD; Bobbert MF; van Soest AJ; Gribble PL; Kistemaker DA
    PLoS One; 2016; 11(2):e0150019. PubMed ID: 26919645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy expenditure during human gait. II - Role of muscle groups.
    Rodrigo S; Garcia I; Franco M; Alonso-Vazquez A; Ambrosio J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4858-61. PubMed ID: 21096906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. II. Motoneuron firing-rate modulation.
    Tansey KE; Botterman BR
    J Neurophysiol; 1996 Jan; 75(1):38-50. PubMed ID: 8822540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms of in vivo muscle fatigue in humans: investigating age-related fatigue resistance with a computational model.
    Callahan DM; Umberger BR; Kent JA
    J Physiol; 2016 Jun; 594(12):3407-21. PubMed ID: 26824934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanical simulation of thorax deformation using finite element approach.
    Zhang G; Chen X; Ohgi J; Miura T; Nakamoto A; Matsumura C; Sugiura S; Hisada T
    Biomed Eng Online; 2016 Feb; 15():18. PubMed ID: 26852020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skeletal muscle tissue in movement and health: positives and negatives.
    Lindstedt SL
    J Exp Biol; 2016 Jan; 219(Pt 2):183-8. PubMed ID: 26792329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micromechanical modelling of skeletal muscles based on the finite element method.
    Böl M; Reese S
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of strain and activation on the locomotor function of rat ankle extensor muscles.
    Hodson-Tole EF; Wakeling JM
    J Exp Biol; 2010 Jan; 213(2):318-30. PubMed ID: 20038667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensitivity of a Hill-based muscle model to perturbations in model parameters.
    Scovil CY; Ronsky JL
    J Biomech; 2006; 39(11):2055-63. PubMed ID: 16084520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Limitations to maximum sprinting speed imposed by muscle mechanical properties.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 Apr; 45(6):1092-7. PubMed ID: 22035638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. History effect and timing of force production introduced in a skeletal muscle model.
    Kosterina N; Westerblad H; Eriksson A
    Biomech Model Mechanobiol; 2012 Sep; 11(7):947-57. PubMed ID: 22203363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of stretch reflexes to locomotor control: a modeling study.
    Yakovenko S; Gritsenko V; Prochazka A
    Biol Cybern; 2004 Feb; 90(2):146-55. PubMed ID: 14999481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Aug; 208(Pt 15):2831-43. PubMed ID: 16043588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of muscle and locomotor performance by a series compliance: A mechanistic simulation study.
    Robertson JW; Struthers CN; Syme DA
    PLoS One; 2018; 13(1):e0191828. PubMed ID: 29370246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.