These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29659719)

  • 1. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks.
    Budach S; Marsico A
    Bioinformatics; 2018 Sep; 34(17):3035-3037. PubMed ID: 29659719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Neural Networks for Epistatic Sequence Analysis.
    Lin J
    Methods Mol Biol; 2021; 2212():277-289. PubMed ID: 33733362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural networks with circular filters enable data efficient inference of sequence motifs.
    Blum CF; Kollmann M
    Bioinformatics; 2019 Oct; 35(20):3937-3943. PubMed ID: 30918943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional neural networks for classification of alignments of non-coding RNA sequences.
    Aoki G; Sakakibara Y
    Bioinformatics; 2018 Jul; 34(13):i237-i244. PubMed ID: 29949978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological sequence modeling with convolutional kernel networks.
    Chen D; Jacob L; Mairal J
    Bioinformatics; 2019 Sep; 35(18):3294-3302. PubMed ID: 30753280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lean and deep models for more accurate filtering of SNP and INDEL variant calls.
    Friedman S; Gauthier L; Farjoun Y; Banks E
    Bioinformatics; 2020 Apr; 36(7):2060-2067. PubMed ID: 31830260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LeNup: learning nucleosome positioning from DNA sequences with improved convolutional neural networks.
    Zhang J; Peng W; Wang L
    Bioinformatics; 2018 May; 34(10):1705-1712. PubMed ID: 29329398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of mutation effects using a deep temporal convolutional network.
    Kim HY; Kim D
    Bioinformatics; 2020 Apr; 36(7):2047-2052. PubMed ID: 31746978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network architectures for predicting DNA-protein binding.
    Zeng H; Edwards MD; Liu G; Gifford DK
    Bioinformatics; 2016 Jun; 32(12):i121-i127. PubMed ID: 27307608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepT3: deep convolutional neural networks accurately identify Gram-negative bacterial type III secreted effectors using the N-terminal sequence.
    Xue L; Tang B; Chen W; Luo J
    Bioinformatics; 2019 Jun; 35(12):2051-2057. PubMed ID: 30407530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.