These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 29660144)
1. In situ growth of Zr-based metal-organic framework UiO-66-NH Tang P; Wang R; Chen Z Electrophoresis; 2018 Oct; 39(20):2619-2625. PubMed ID: 29660144 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Ma M; Zhang J; Li P; Du Y; Gan J; Yang J; Zhang L Mikrochim Acta; 2021 May; 188(6):186. PubMed ID: 33978843 [TBL] [Abstract][Full Text] [Related]
3. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Li Q; Li Z; Fu Y; Clarot I; Boudier A; Chen Z Analyst; 2021 Oct; 146(21):6643-6649. PubMed ID: 34591047 [TBL] [Abstract][Full Text] [Related]
4. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive. Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664 [TBL] [Abstract][Full Text] [Related]
5. TpBD/UiO-66-NH Gao L; Qu X; Meng S; Chen M; He Y; Zhao F; Chu H; Qin S; Jin F RSC Adv; 2024 Aug; 14(38):28148-28159. PubMed ID: 39228753 [TBL] [Abstract][Full Text] [Related]
6. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Kong D; Chen Z Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854 [TBL] [Abstract][Full Text] [Related]
7. [Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography]. Zhao L; Lü W; Niu X; Pan C; Chen H; Chen X Se Pu; 2020 Sep; 38(9):1095-1101. PubMed ID: 34213276 [TBL] [Abstract][Full Text] [Related]
8. In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation. Pan C; Wang W; Zhang H; Xu L; Chen X J Chromatogr A; 2015 Apr; 1388():207-16. PubMed ID: 25725957 [TBL] [Abstract][Full Text] [Related]
9. Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography. Mao Z; Chen Z J Chromatogr A; 2017 Jan; 1480():99-105. PubMed ID: 27993394 [TBL] [Abstract][Full Text] [Related]
10. Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. Yu LQ; Yang CX; Yan XP J Chromatogr A; 2014 May; 1343():188-94. PubMed ID: 24767798 [TBL] [Abstract][Full Text] [Related]
11. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. Xu YY; Lv WJ; Ren CL; Niu XY; Chen HL; Chen XG J Chromatogr A; 2018 Jan; 1532():223-231. PubMed ID: 29203115 [TBL] [Abstract][Full Text] [Related]
12. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110 [TBL] [Abstract][Full Text] [Related]
13. In situ one-pot synthesis of polydopamine/octadecylamine co-deposited coating in capillary for open-tubular capillary electrochromatography. Huang Y; Yi G; Ji B; Gao D; Bai Y; Liu Y; Wang L; Xia Z; Fu Q J Chromatogr A; 2020 Jan; 1610():460559. PubMed ID: 31564563 [TBL] [Abstract][Full Text] [Related]
14. Preparation and evaluation of open-tubular capillary column combining a metal-organic framework and a brush-shaped polymer for liquid chromatography. Chen K; Zhang L; Zhang W J Sep Sci; 2018 Jun; 41(11):2347-2353. PubMed ID: 29600554 [TBL] [Abstract][Full Text] [Related]
15. Fluoro-functionalized stationary phases for electrochromatographic separation of organic fluorides. Li Z; Mao Z; Hu C; Li Q; Chen Z J Chromatogr A; 2020 Aug; 1625():461269. PubMed ID: 32709321 [TBL] [Abstract][Full Text] [Related]
16. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography. Fu Y; Li Z; Hu C; Li Q; Chen Z J Chromatogr A; 2023 Aug; 1705():464205. PubMed ID: 37442070 [TBL] [Abstract][Full Text] [Related]
17. Open-tubular capillary electrochromatographic determination of ten sulfonamides in tap water and milk by a metal-organic framework-coated capillary column. Wang X; Ye N; Hu X; Liu Q; Li J; Peng L; Ma X Electrophoresis; 2018 Sep; 39(17):2236-2245. PubMed ID: 29799133 [TBL] [Abstract][Full Text] [Related]
18. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. Li Z; Liao Z; Hu J; Chen Z J Chromatogr A; 2023 Apr; 1694():463905. PubMed ID: 36881971 [TBL] [Abstract][Full Text] [Related]
19. Solvothermal-assisted in situ rapid growth of octadecylamine functionalized polydopamine-based permanent coating as stationary phase for open-tubular capillary electrochromatography. Yi G; He J; Ji B; Gao D; Zhang K; Wang L; Zeng J; Xia Z; Fu Q J Chromatogr A; 2020 Sep; 1628():461436. PubMed ID: 32822976 [TBL] [Abstract][Full Text] [Related]
20. Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography. Wang C; Zhu D; Zhang J; Du Y J Pharm Biomed Anal; 2022 Jun; 215():114777. PubMed ID: 35462287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]