These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29660254)

  • 41. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants.
    Testerink C; Munnik T
    J Exp Bot; 2011 Apr; 62(7):2349-61. PubMed ID: 21430291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization.
    Gao HB; Chu YJ; Xue HW
    Mol Plant; 2013 Sep; 6(5):1692-702. PubMed ID: 23686948
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phospholipase D- and phosphatidic acid-mediated signaling in plants.
    Li M; Hong Y; Wang X
    Biochim Biophys Acta; 2009 Sep; 1791(9):927-35. PubMed ID: 19289179
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulation and binding of myocardial phospholipase C by phosphatidic acid.
    Henry RA; Boyce SY; Kurz T; Wolf RA
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C349-58. PubMed ID: 7653517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Head group specificity of phospholipase D isoenzymes from poppy seedlings (Papaver somniferum L.).
    Oblozinsky M; Ulbrich-Hofmann R; Bezakova L
    Biotechnol Lett; 2005 Feb; 27(3):181-5. PubMed ID: 15717127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factor XI activation by meizothrombin: stimulation by phospholipid vesicles containing both phosphatidylserine and phosphatidylethanolamine.
    von dem Borne PA; Mosnier LO; Tans G; Meijers JC; Bouma BN
    Thromb Haemost; 1997 Aug; 78(2):834-9. PubMed ID: 9268180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of amizil on phospholipid metabolism in different parts of the brain].
    Gerasimova IA; Flerov MA
    Vopr Med Khim; 1976; 22(1):72-5. PubMed ID: 193289
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for ternary complex formation by histone H1, DNA, and liposomes.
    Kõiv A; Palvimo J; Kinnunen PK
    Biochemistry; 1995 Jun; 34(25):8018-27. PubMed ID: 7794914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of smooth muscle myosin phosphatase with phospholipids.
    Ito M; Feng J; Tsujino S; Inagaki N; Inagaki M; Tanaka J; Ichikawa K; Hartshorne DJ; Nakano T
    Biochemistry; 1997 Jun; 36(24):7607-14. PubMed ID: 9200713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating the interfacial binding of bacterial phosphatidylinositol-specific phospholipase C.
    Wehbi H; Feng J; Kolbeck J; Ananthanarayanan B; Cho W; Roberts MF
    Biochemistry; 2003 Aug; 42(31):9374-82. PubMed ID: 12899624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids selectively interact with heat shock protein 27.
    Yachida N; Hoshino F; Murakami C; Ebina M; Miura Y; Sakane F
    J Biol Chem; 2023 Mar; 299(3):103019. PubMed ID: 36791913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane activity of biomimetic facially amphiphilic antibiotics.
    Arnt L; Rennie JR; Linser S; Willumeit R; Tew GN
    J Phys Chem B; 2006 Mar; 110(8):3527-32. PubMed ID: 16494408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Platelet-activating factor stimulates phosphatidic acid formation in cultured rat mesangial cells: roles of phospholipase D, diglyceride kinase, and de novo phospholipid synthesis.
    Kester M
    J Cell Physiol; 1993 Aug; 156(2):317-25. PubMed ID: 8393878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Lipid signaling pathways in plants and their roles in response to water constraints].
    Leprince AS; Savouré A
    Biol Aujourdhui; 2010; 204(1):11-9. PubMed ID: 20950571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphatidic acid- and phosphatidylserine-binding proteins.
    Stace CL; Ktistakis NT
    Biochim Biophys Acta; 2006 Aug; 1761(8):913-26. PubMed ID: 16624617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of ionizing radiation on lipid metabolism in bone marrow cells.
    Levis GM; Efstratiadis AA; Mantzos JD; Miras CJ
    Radiat Res; 1975 Feb; 61(2):342-9. PubMed ID: 1110981
    [No Abstract]   [Full Text] [Related]  

  • 57. Susceptibility of myelin glycerophospholipids and sphingolipids to oxidative attack by hydroxyl free radicals as measured by the thiobarbituric acid test.
    Brett R; Rumsby MG
    Neurochem Int; 1994 Mar; 24(3):241-51. PubMed ID: 8025532
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Influence of lignin and oxygen on the growth and the lipid formation of the fungus Lentinus tigrinus].
    IIvashechkin AA; Sergeeva IaÉ; Lunin VV; Bogdan VI; Mysiakina IS; Feofilova EP
    Prikl Biokhim Mikrobiol; 2014; 50(3):318-23. PubMed ID: 25757341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain.
    Julkowska MM; McLoughlin F; Galvan-Ampudia CS; Rankenberg JM; Kawa D; Klimecka M; Haring MA; Munnik T; Kooijman EE; Testerink C
    Plant Cell Environ; 2015 Mar; 38(3):614-24. PubMed ID: 25074439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The catalytic domains of Clostridium sordellii lethal toxin and related large clostridial glucosylating toxins specifically recognize the negatively charged phospholipids phosphatidylserine and phosphatidic acid.
    Varela Chavez C; Hoos S; Haustant GM; Chenal A; England P; Blondel A; Pauillac S; Lacy DB; Popoff MR
    Cell Microbiol; 2015 Oct; 17(10):1477-93. PubMed ID: 25882477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.