BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29660316)

  • 1. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation.
    Wowk B; Fahy GM; Ahmedyar S; Taylor MJ; Rabin Y
    Cryobiology; 2018 Jun; 82():70-77. PubMed ID: 29660316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Specific Heat and Crystallization in VS55, DP6, and M22 Cryoprotectant Systems With and Without Sucrose.
    Phatak S; Natesan H; Choi J; Brockbank KGM; Bischof JC
    Biopreserv Biobank; 2018 Aug; 16(4):270-277. PubMed ID: 29958001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal expansion of the cryoprotectant cocktail DP6 combined with synthetic ice modulators in presence and absence of biological tissues.
    Eisenberg DP; Taylor MJ; Rabin Y
    Cryobiology; 2012 Oct; 65(2):117-25. PubMed ID: 22579521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.
    Ehrlich LE; Malen JA; Rabin Y
    Cryobiology; 2016 Oct; 73(2):196-202. PubMed ID: 27471057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.
    Wang HY; Lu SS; Lun ZR
    Cryobiology; 2009 Feb; 58(1):115-117. PubMed ID: 19026625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2019 Dec; 91():128-136. PubMed ID: 31526802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22.
    Han Z; Gangwar L; Magnuson E; Etheridge ML; Pringle CO; Bischof JC; Choi J
    Cryobiology; 2022 Jun; 106():113-121. PubMed ID: 35276219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrarapid Inductive Rewarming of Vitrified Biomaterials with Thin Metal Forms.
    Manuchehrabadi N; Shi M; Roy P; Han Z; Qiu J; Xu F; Lu TJ; Bischof J
    Ann Biomed Eng; 2018 Nov; 46(11):1857-1869. PubMed ID: 29922954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass-forming tendency in the system water-dimethyl sulfoxide.
    Baudot A; Alger L; Boutron P
    Cryobiology; 2000 Mar; 40(2):151-8. PubMed ID: 10788314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal expansion of blood vessels in low cryogenic temperatures, Part II: Vitrification with VS55, DP6, and 7.05 M DMSO.
    Rios JL; Rabin Y
    Cryobiology; 2006 Apr; 52(2):284-94. PubMed ID: 16488407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum mechanics analysis of fracture progression in the vitrified cryoprotective agent DP6.
    Steif PS; Palastro MC; Rabin Y
    J Biomech Eng; 2008 Apr; 130(2):021006. PubMed ID: 18412493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.
    Eisenberg DP; Taylor MJ; Jimenez-Rios JL; Rabin Y
    Cryobiology; 2014 Jun; 68(3):318-26. PubMed ID: 24769313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorimetric Studies on Thermal Properties of Nano-Cryoprotectant Solutions during Vitrification.
    Xu HF; Hao BT; Liu LJ; Tang LL; Liu BL
    Cryo Letters; 2016; 37(6):406-410. PubMed ID: 28072427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification.
    Shin DJ; Kong H; Popova EV; Moon HK; Park SY; Park SU; Lee SC; Kim HH
    Cryo Letters; 2012; 33(5):402-10. PubMed ID: 23224373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal expansion measurements of cryoprotective agents. Part II: measurements of DP6 and VS55, and comparison with DMSO.
    Rabin Y; Bell E
    Cryobiology; 2003 Jun; 46(3):264-70. PubMed ID: 12818216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation of the ovary by vitrification as an alternative to slow-cooling protocols.
    Courbiere B; Odagescu V; Baudot A; Massardier J; Mazoyer C; Salle B; Lornage J
    Fertil Steril; 2006 Oct; 86(4 Suppl):1243-51. PubMed ID: 16978623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues: sucrose versus trehalose as the non-permeable protective agent.
    Tian T; Zhao G; Han D; Zhu K; Chen D; Zhang Z; Wei Z; Cao Y; Zhou P
    Hum Reprod; 2015 Apr; 30(4):877-83. PubMed ID: 25662812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.
    Lv F; Liu B; Li W; Jaganathan GK
    Cryobiology; 2014 Feb; 68(1):84-90. PubMed ID: 24374134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical cooling and warming rates to avoid ice crystallization in small pieces of mammalian organs permeated with cryoprotective agents.
    Peyridieu JF; Baudot A; Boutron P; Mazuer J; Odin J; Ray A; Chapelier E; Payen E; Descotes JL
    Cryobiology; 1996 Aug; 33(4):436-46. PubMed ID: 8764852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.