These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29660341)

  • 1. Evaluation of synthetic promoters in Physcomitrella patens.
    Peramuna A; Bae H; Rasmussen EK; Dueholm B; Waibel T; Critchley JH; Brzezek K; Roberts M; Simonsen HT
    Biochem Biophys Res Commun; 2018 Jun; 500(2):418-422. PubMed ID: 29660341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude.
    Horstmann V; Huether CM; Jost W; Reski R; Decker EL
    BMC Biotechnol; 2004 Jul; 4():13. PubMed ID: 15239842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens.
    Marella HH; Sakata Y; Quatrano RS
    Plant J; 2006 Jun; 46(6):1032-44. PubMed ID: 16805735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physcomitrella patens, a versatile synthetic biology chassis.
    Reski R; Bae H; Simonsen HT
    Plant Cell Rep; 2018 Oct; 37(10):1409-1417. PubMed ID: 29797047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and validation of promoters involved in the abscisic acid response in Physcomitrella patens.
    Timmerhaus G; Hanke ST; Buchta K; Rensing SA
    Mol Plant; 2011 Jul; 4(4):713-29. PubMed ID: 21398384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Physcomitrella patens System for Transient Gene Expression Assays.
    Thévenin J; Xu W; Vaisman L; Lepiniec L; Dubreucq B; Dubos C
    Methods Mol Biol; 2016; 1482():151-61. PubMed ID: 27557766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Physcomitrella patens actin 5' regions for high transgene expression: importance of 5' introns.
    Weise A; Rodriguez-Franco M; Timm B; Hermann M; Link S; Jost W; Gorr G
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):337-45. PubMed ID: 16059684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of the abscisic acid-response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals.
    Kamisugi Y; Cuming AC
    Plant Mol Biol; 2005 Nov; 59(5):723-37. PubMed ID: 16270226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physcomitrella patens: mosses enter the genomic age.
    Quatrano RS; McDaniel SF; Khandelwal A; Perroud PF; Cove DJ
    Curr Opin Plant Biol; 2007 Apr; 10(2):182-9. PubMed ID: 17291824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses.
    Tang T; Yu A; Li P; Yang H; Liu G; Liu L
    Sci Rep; 2016 Sep; 6():33650. PubMed ID: 27644410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens.
    King BC; Vavitsas K; Ikram NK; Schrøder J; Scharff LB; Bassard JÉ; Hamberger B; Jensen PE; Simonsen HT
    Sci Rep; 2016 Apr; 6():25030. PubMed ID: 27126800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of HY5 homolog genes involved in early light-signaling in Physcomitrella patens.
    Yamawaki S; Yamashino T; Nakanishi H; Mizuno T
    Biosci Biotechnol Biochem; 2011; 75(8):1533-9. PubMed ID: 21821942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring plant biodiversity: the Physcomitrella genome and beyond.
    Lang D; Zimmer AD; Rensing SA; Reski R
    Trends Plant Sci; 2008 Oct; 13(10):542-9. PubMed ID: 18762443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants.
    Yasmeen E; Wang J; Riaz M; Zhang L; Zuo K
    Plant Commun; 2023 Jul; 4(4):100558. PubMed ID: 36760129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanol regulated yeast promoters: production vehicles and toolbox for synthetic biology.
    Gasser B; Steiger MG; Mattanovich D
    Microb Cell Fact; 2015 Dec; 14():196. PubMed ID: 26627685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries.
    Gitzinger M; Parsons J; Reski R; Fussenegger M
    Plant Biotechnol J; 2009 Jan; 7(1):73-86. PubMed ID: 19021876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of the genes involved in the two-component system of the moss Physcomitrella patens.
    Ishida K; Yamashino T; Nakanishi H; Mizuno T
    Biosci Biotechnol Biochem; 2010; 74(12):2542-5. PubMed ID: 21150091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new system for fast and quantitative analysis of heterologous gene expression in plants.
    Thévenin J; Dubos C; Xu W; Le Gourrierec J; Kelemen Z; Charlot F; Nogué F; Lepiniec L; Dubreucq B
    New Phytol; 2012 Jan; 193(2):504-12. PubMed ID: 22023451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.